Search Results

Now showing 1 - 7 of 7
  • Item
    Halloysite Nanotubes Noncovalently Functionalised with SDS Anionic Surfactant and PS-b-P4VP Block Copolymer for Their Effective Dispersion in Polystyrene as UV-Blocking Nanocomposite Films
    (New York, NY : Hindawi Publ., 2017) Tzounis, Lazaros; Herlekar, Shreya; Tzounis, Antonios; Charisiou, Nikolaos D.; Goula, Maria; Stamm, Manfred
    Asimple and versatilemethod is reported for the noncovalent functionalisation of natural and "green" halloysite nanotubes (HNTs) allowing their effective dispersion in a polystyrene (PS) thermoplastic matrix via solvent mixing. Initially, HNTs (pristine HNTs) were modified with physically adsorbed surfactant molecules of sodium dodecyl sulphate (SDS) and PS-b-P4VP [P4VP: poly(4-vinylpyridine)] block copolymer (BCP). Hereafter, SDS and BCP modified HNTs will be indicated as SDS-m-HNT and BCP-m-HNT.Nanocomposite films with 1, 2, and 5 wt.%HNTloadingswere prepared, abbreviated as PS-SDS-m-HNT1, PS-SDS-m-HNT2, and PS-SDS-m-HNT5 and PS-BCP-m-HNT1, PS-BCP-m-HNT2, and PS-BCP-m-HNT5 (where 1, 2, and 5 correspond to the wt.% of HNTs). All nanocomposites depicted improved thermal degradation compared to the neat PS as revealed by thermogravimetric analysis (TGA). Transmission electron microscopy (TEM) confirmed the good dispersion state of HNTs and the importance of modification by SDS and BCP. X-ray diffraction (XRD) studies showed the characteristic interlayer spacing between the two silicate layers of pristine and modified HNTs. The PS/HNT nanocomposite films exhibited excellent ultraviolent-visible (UV-vis) absorbance properties and their potential application as UV-filters could be envisaged.
  • Item
    Editors' Choice - Precipitation of Suboxides in Silicon, their Role in Gettering of Copper Impurities and Carrier Recombination
    (Pennington, NJ : ECS, 2020) Kissinger, G.; Kot, D.; Huber, A.; Kretschmer, R.; Müller, T.; Sattler, A.
    This paper describes a theoretical investigation of the phase composition of oxide precipitates and the corresponding emission of self-interstitials at the minimum of the free energy and their evolution with increasing number of oxygen atoms in the precipitates. The results can explain the compositional evolution of oxide precipitates and the role of self-interstitials therein. The formation of suboxides at the edges of SiO2 precipitates after reaching a critical size can explain several phenomena like gettering of Cu by segregation to the suboxide region and lifetime reduction by recombination of minority carriers in the suboxide. It provides an alternative explanation, based on minimized free energy, to the theory of strained and unstrained plates. A second emphasis was payed to the evolution of the morphology of oxide precipitates. Based on the comparison with results from scanning transmission electron microscopy the sequence of morphology evolution of oxide precipitates was deduced. It turned out that it is opposite to the sequence assumed until now. © 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.
  • Item
    Synthesis and characterization of MgAl-DBS LDH/PLA composite by sonication-assisted masterbatch (SAM) melt mixing method
    (Cambridge : RSC, 2019) Quispe-Dominguez, Roger; Naseem, Sajid; Leuteritz, Andreas; Kuehnert, Ines
    This research work is based on the comparison of the mixing phenomena of magnesium-aluminum (MgAl) layered double hydroxides (LDHs) intercalated by dodecylbenzene sulfonate (MgAl-DBS) in poly(lactic acid) (PLA). Two mixing techniques were used to compare the dispersion of LDHs in PLA such as sonication-assisted masterbatch (SAM) melt mixing and direct melting (DM) methods. MgAl LDHs synthesized by the urea hydrolysis method and intercalated with DBS anions using anion exchange reaction and were used in different ratios in PLA (1.25, 2.5, and 5 wt%). MgAl LDHs and their anion intercalation were studied by the X-ray diffraction analysis (XRD) method. Different properties of LDH/PLA composites were compared to analyze the effect of these mixing techniques. Dispersion and exfoliation of LDHs in PLA were investigated by X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM). Influences on the rheological properties were evaluated by analyzing the complex viscosities (η*), storage modulus (G′) and loss modulus (G′′) by using a rheometer. The thermal properties, thermal stability and effect on crystallinity of composites made with the two mixing techniques were analyzed by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) respectively. The mixing mechanism and amount of MgAl-DBS LDHs have a notable effect on the properties of PLA composites with sonication-assisted masterbatch melt mixing techniques giving better dispersion of LDHs in PLA composites as compared to direct melt mixing. © The Royal Society of Chemistry.
  • Item
    In Situ Transmission Electron Microscopy of Disorder–Order Transition in Epitaxially Stabilized FeGe2
    (Washington, DC : Soc., 2021) Terker, Markus; Nicolai, Lars; Gaucher, Samuel; Herfort, Jens; Trampert, Achim
    Isothermal crystallization of amorphous Ge deposited on a cubic Fe3Si/GaAs(001) substrate is performed by in situ annealing within a transmission electron microscope. It was found that the formation of epitaxially aligned tetragonal FeGe2 is associated with a disorder–order phase transition mainly consisting of a rearrangement of the Fe/vacancy sublattice from a random distribution to alternating filled and empty layers. Additionally, atomically resolved high-angle annular dark-field scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy demonstrated that the vertical lattice spacing of the Ge sublattice reduces across vacancy layers, indicating that strain minimization plays a role in the phase transition process. Crystallization and ordering are both found to proceed layer-by-layer and with square-root-shaped kinetics with a smaller transition rate for the latter.
  • Item
    Systematic tuning of segmented magnetic nanowires into three-dimensional arrays of 'bits'
    (London : RSC Publishing, 2017) Bochmann, S.; Fernandez-Pacheco, A.; Mačković, M.; Neff, A.; Siefermann, K.R.; Spiecker, E.; Cowburn, R.P.; Bachmann, J.
    A method is presented for the preparation of a three-dimensional magnetic data storage material system. The major ingredients are an inert nanoporous matrix prepared by anodization and galvanic plating of magnetic and non-magnetic metals in wire shape inside the cylindrical pores. The individual nanomagnets consist of a nickel-cobalt alloy, the composition of which is tuned systematically by adjusting the electrolytic bath composition at one optimal applied potential. The lowest magnetocrystalline anisotropy is obtained at the composition Ni60Co40, as quantified by superconducting quantum interference device magnetometry. Wires of this composition experience a pinning-free propagation of magnetic domain walls, as determined by single-wire magneto-optical Kerr effect magnetometry. Adding copper into the electrolyte allows one to generate segments of Ni60Co40 separated by non-magnetic copper. The segment structure is apparent in individual nanowires imaged by scanning electron microscopy, UV-photoelectron emission microscopy, and transmission electron microscopy. The single-domain structure of the wire segments is evidenced by magnetic force microscopy.
  • Item
    Consolidation and performance gains in plasma-sintered printed nanoelectrodes
    (Cambridge : Royal Society of Chemistry, 2023) Engel, Lukas F.; González-García, Lola; Kraus, Tobias
    We report on the unusual, advantageous ageing of flexible transparent electrodes (FTEs) that were self-assembled from oleylamine-capped gold nanospheres (AuNPs) by direct nanoimprinting of inks with different particle concentrations (cAu = 3 mg mL−1 to 30 mg mL−1). The resulting lines were less than 2.5 μm wide and consisted of disordered particle assemblies. Small-Angle X-ray Scattering confirmed that particle packing did not change with ink concentration. Plasma sintering converted the printed structures into lines with a thin, electrically conductive metal shell and a less conductive hybrid core. We studied the opto-electronic performance directly after plasma sintering and after fourteen days of storage at 22 °C and 55% rH in the dark. The mean optical transmittance T̄400-800 in the range from 400 nm to 800 nm increased by up to ≈ 3%, while the sheet resistance Rsh strongly decreased by up to ≈ 82% at all concentrations. We correlated the changes with morphological changes visible in scanning and transmission electron microscopy and identified two sequential ageing stages: (I) post-plasma relaxation effects in and consolidation of the shell, and (II) particle re-organization, de-mixing, coarsening, and densification of the core with plating of Au from the core onto the shell, followed by solid-state de-wetting (ink concentrations cAu < 15 mg mL−1) or stability (cAu ≥ 15 mg mL−1). The plating of Au from the hybrid core improved the FTEs' Figure of Merit FOM = T̄400-800·Rsh−1 by up to ≈ 5.8 times and explains the stable value of ≈ 3.3%·Ωsq−1 reached after 7 days of ageing at cAu = 30 mg mL−1
  • Item
    Polyacrylonitrile-containing amphiphilic block copolymers: self-assembly and porous membrane formation
    (Cambridge : RSC Publ., 2023) Gemmer, Lea; Niebuur, Bart-Jan; Dietz, Christian; Rauber, Daniel; Plank, Martina; Frieß, Florian V.; Presser, Volker; Stark, Robert W.; Kraus, Tobias; Gallei, Markus
    The development of hierarchically porous block copolymer (BCP) membranes via the application of the self-assembly and non-solvent induced phase separation (SNIPS) process is one important achievement in BCP science in the last decades. In this work, we present the synthesis of polyacrylonitrile-containing amphiphilic BCPs and their unique microphase separation capability, as well as their applicability for the SNIPS process leading to isoporous integral asymmetric membranes. Poly(styrene-co-acrylonitrile)-b-poly(2-hydroxyethyl methacrylate)s (PSAN-b-PHEMA) are synthesized via a two-step atom transfer radical polymerization (ATRP) procedure rendering PSAN copolymers and BCPs with overall molar masses of up to 82 kDa while maintaining low dispersity index values in the range of Đ = 1.13-1.25. The polymers are characterized using size-exclusion chromatography (SEC) and NMR spectroscopy. Self-assembly capabilities in the bulk state are examined using transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) measurements. The fabrication of isoporous integral asymmetric membranes is investigated, and membranes are examined by scanning electron microscopy (SEM). The introduction of acrylonitrile moieties within the membrane matrix could improve the membranes’ mechanical properties, which was confirmed by nanomechanical analysis using atomic force microscopy (AFM).