Search Results

Now showing 1 - 3 of 3
  • Item
    Activation, deactivation and reversibility phenomena in homogeneous catalysis : A showcase based on the chemistry of rhodium/phosphine catalysts
    (Basel : MDPI, 2019) Alberico, Elisabetta; Möller, Saskia; Horstmann, Moritz; Drexler, Hans-Joachim; Heller, Detlef
    In the present work, the rich chemistry of rhodium/phosphine complexes, which are applied as homogeneous catalysts to promote a wide range of chemical transformations, has been used to showcase how the in situ generation of precatalysts, the conversion of precatalysts into the actually active species, as well as the reaction of the catalyst itself with other components in the reaction medium (substrates, solvents, additives) can lead to a number of deactivation phenomena and thus impact the efficiency of a catalytic process. Such phenomena may go unnoticed or may be overlooked, thus preventing the full understanding of the catalytic process which is a prerequisite for its optimization. Based on recent findings both from others and the authors’ laboratory concerning the chemistry of rhodium/diphosphine complexes, some guidelines are provided for the optimal generation of the catalytic active species from a suitable rhodium precursor and the diphosphine of interest; for the choice of the best solvent to prevent aggregation of coordinatively unsaturated metal fragments and sequestration of the active metal through too strong metal–solvent interactions; for preventing catalyst poisoning due to irreversible reaction with the product of the catalytic process or impurities present in the substrate. © 2019 by the authors.
  • Item
    Homogeneous Catalyst Recycling and Separation of a Multicomponent Mixture Using Organic Solvent Nanofiltration
    (Weinheim : Wiley-VCH, 2019) Schnoor, Johann-Kilian; Fuchs, Martin; Böcking, Axel; Wessling, Matthias; Liauw, Marcel A.
    In homogeneous catalysis, the application of organic solvent nanofiltration (OSN) has become a well-known alternative to common recycling methods. Even though some OSN membranes are commercially available, their classification and the scope of application have to be determined for the specific solvent mixture. The commercial membrane Evoniks DuraMem® 300 was tested in a mixture of ethanol, ethyl acetate, and cyclohexane with magnesium triflate as possible catalyst. The cross permeate fluxes were measured for two transmembrane pressures and the hydrodynamic radii of the components were determined. Some of the components in the ternary mixture are retained, which makes the membrane also suitable for fractioning thereof. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Formic Acid Dehydrogenation by a Cyclometalated κ3-CNN Ruthenium Complex
    (Weinheim : Wiley-VCH, 2020) Léval, Alexander; Junge, Henrik; Beller, Matthias
    Hydrogen utilization as a sustainable energy vector is of growing interest. We report herein a cyclometalated ruthenium complex [Ru(κ3-CNN)(dppb)Cl], originally described by Baratta, to be active in the selective dehydrogenation (DH) of formic acid (FA) to H2 and CO2. TON's of more than 10000 were achieved under best conditions without observation of CO (detection limit 10 ppm). The distinguished behavior of the catalyst was explored varying the starting conditions. Our observation revealed the complex [Ru(κ3-CNN)(dppb)(OOCH)] as key species in the catalytic cycle. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.