Search Results

Now showing 1 - 5 of 5
  • Item
    Thermophilic films and fibers from photo cross-linkable UCST-type polymers
    (Cambridge : RSC Publ., 2015) Liu, Fangyao; Jiang, Shaohua; Ionov, Leonid; Agarwal, Seema
    Photo cross-linkable thermoresponsive polymers of UCST-type based on acrylamide (AAm) and acrylonitrile (AN) useful for preparing thermophilic hydrogel films and fibers are presented. The polymers prepared via free radical and reversible addition fragmentation chain-transfer (RAFT) polymerization methods using N-(4-benzoylphenyl)acrylamide (BPAm) as photo cross-linkable comonomers provided highly stable UCST-type phase transition in water reproducible without hysteresis for many cycles. The cloud point could be manipulated by varying the acrylonitrile amount in the feed. Chemically cross-linked hydrogel films and nanofibers (average diameter 500 nm) were successfully prepared from the ter-copolymers by solution casting and electrospinning followed by UV irradiation. These hydrogels showed a continuous positive volume transition behavior in water with increasing temperature that was utilized for the design of microactuators.
  • Item
    Fe3O4 Nanoparticles Grown on Cellulose/GO Hydrogels as Advanced Catalytic Materials for the Heterogeneous Fenton-like Reaction
    (Washington, DC : ACS Publications, 2019) Chen, Yian; Pötschke, Petra; Pionteck, Jürgen; Voit, Brigitte; Qi, Haisong
    Cellulose/graphene oxide (GO)/iron oxide (Fe3O4) composites were prepared by coprecipitating iron salts onto cellulose/GO hydrogels in a basic solution. X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared, and X-ray diffraction characterization showed that Fe3O4 was successfully coated on GO sheets and cellulose. Cellulose/GO/Fe3O4 composites showed excellent catalytic activity by maintaining almost 98% of the removal of acid orange 7 (AO7) and showed stability over 20 consecutive cycles. This performance is attributable to the synergistic effect of Fe3O4 and GO during the heterogeneous Fenton-like reaction. Especially, the cellulose/GO/Fe3O4 composites preserve their activity by keeping the ratio of Fe3+/Fe2+ at 2 even after 20 catalysis cycles, which is supported by XPS analysis.
  • Item
    The innate immune response of self-assembling silk fibroin hydrogels
    (Cambridge : Royal Soc. of Chemistry, 2021) Gorenkova, Natalia; Maitz, Manfred F.; Böhme, Georg; Alhadrami, Hani A.; Jiffri, Essam H.; Totten, John D.; Werner, Carsten; Carswell, Hilary V. O.; Seib, F. Philipp
    Silk has a long track record of use in humans, and recent advances in silk fibroin processing have opened up new material formats. However, these new formats and their applications have subsequently created a need to ascertain their biocompatibility. Therefore, the present aim was to quantify the haemocompatibility and inflammatory response of silk fibroin hydrogels. This work demonstrated that self-assembled silk fibroin hydrogels, as one of the most clinically relevant new formats, induced very low blood coagulation and platelet activation but elevated the inflammatory response of human whole blood in vitro. In vivo bioluminescence imaging of neutrophils and macrophages showed an acute, but mild, local inflammatory response which was lower than or similar to that induced by polyethylene glycol, a benchmark material. The time-dependent local immune response in vivo was corroborated by histology, immunofluorescence and murine whole blood analyses. Overall, this study confirms that silk fibroin hydrogels induce a similar immune response to that of PEG hydrogels, while also demonstrating the power of non-invasive bioluminescence imaging for monitoring tissue responses. This journal is
  • Item
    From microfluidics to hierarchical hydrogel materials
    (Amsterdam [u.a.] : Elsevier Science, 2023) Weigel, Niclas; Li, Yue; Fery, Andreas; Thiele, Julian
    Over the past two decades, microfluidics has made significant contributions to material and life sciences, particularly via the design of nano-, micro- and mesoscale materials such as nanoparticles, micelles, vesicles, emulsion droplets, and microgels. Unmatched in control over a multitude of material parameters, microfluidics has also shed light on fundamental aspects of material design such as the early stages of nucleation and growth processes as well as structure evolution. Exemplarily, polymer hydrogel particles can be formed via microfluidics with exact control over size, shape, functionalization, compartmentalization, and mechanics that is hardly found in any other processing method. Interestingly, the utilization of microfluidics for material design largely focuses on the fabrication of single entities that act as reaction volume for organic and cell-free biosynthesis, cell mimics, or local environment for cell culturing. In recent years, however, hydrogel design has shifted towards structures that integrate a large variety of functions, e.g., to address the demands for sensing tasks in a complex environment or more closely mimicking architecture and organization of tissue by multiparametric cultures. Hence, this review provides an overview of recent literature that explores microfluidics for fabricating hydrogel materials that go well beyond common length scales as well as the structural and functional complexity of microgels necessary to produce hierarchical hydrogel structures. We focus on examples that utilize microfluidics to design microgel-based assemblies, on microfluidically made polymer microgels for 3D bioprinting, on hydrogels fabricated by microfluidics in a continuous fashion, like fibers, and on hydrogel structures that are shaped by microchannels.
  • Item
    Exploring Structure–Property Relationships of GAGs to Tailor ECM-Mimicking Hydrogels
    (Basel : MDPI, 2018) Zimmermann, Ralf; Werner, Carsten; Sterling, James
    Glycosaminoglycans (GAGs) are a class of linear polysaccharides that are ubiquitous in the extracellular matrix (ECM) and on cell surfaces. Due to their key role in development, homeostasis, pathogenesis, and regeneration, GAGs are increasingly used in the design of ECM-mimicking hydrogels to stimulate tissue formation and regenerative processes via specifically orchestrated cell-instructive signals. These applications first and foremost build on the ability of GAGs to effectively bind, protect, and release morphogens. The specificity and strength of morphogen-GAG interactions are largely governed by the number and spatial distribution of negatively charged sulfate groups carried by GAGs. Herein, we summarize a mean-field approach to quantify the density of ionizable groups, GAG concentration, and cross-linking degree of GAG-containing hydrogels on the basis of microslit electrokinetic experiments. We further present and discuss a continuum model of mucosa that accounts for charge regulation by glycan-ion pairing in biological contexts and under conditions of macromolecular crowding. Finally, we discuss the modulation of the morphogen binding and transport in GAG hydrogels by selective desulfation of the GAG component.