Search Results

Now showing 1 - 2 of 2
  • Item
    Continuous wet chemical synthesis of Mo(C,N,O)x as anode materials for Li-ion batteries
    (London [u.a.] : RSC, 2023) Abdirahman Mohamed, Mana; Arnold, Stefanie; Janka, Oliver; Quade, Antje; Schmauch, Jörg; Presser, Volker; Kickelbick, Guido
    Molybdenum carbides, oxides, and mixed anionic carbide–nitride–oxides Mo(C,N,O)x are potential anode materials for lithium-ion batteries. Here we present the preparation of hybrid inorganic–organic precursors by a precipitation reaction of ammonium heptamolybdate ((NH4)6Mo7O24) with para-phenylenediamine in a continuous wet chemical process known as a microjet reactor. The mixing ratio of the two components has a crucial influence on the chemical composition of the obtained material. Pyrolysis of the precipitated precursor compounds preserved the size and morphology of the micro- to nanometer-sized starting materials. Changes in pyrolysis conditions such as temperature and time resulted in variations of the final compositions of the products, which consisted of mixtures of Mo(C,N,O)x, MoO2, Mo2C, Mo2N, and Mo. We optimized the reaction conditions to obtain carbide-rich phases. When evaluated as an anode material for application in lithium-ion battery half-cells, one of the optimized materials shows a remarkably high capacity of 933 mA h g−1 after 500 cycles. The maximum capacity is reached after an activation process caused by various conversion reactions with lithium.
  • Item
    In situ powder X-ray diffraction during hydrogen reduction of MoO3 to MoO2
    (Amsterdam [u.a.] : Elsevier Science, 2022) Burgstaller, M.; Lund, H.; O'Sullivan, M.; Huppertz, H.
    The hydrogen reduction of molybdenum trioxide to molybdenum dioxide is not yet fully understood as evident by continuous scientific interest. Especially the effect of the potassium content on the reduction process has not yet been considered. We prepared several samples of molybdenum trioxide containing varying amounts of potassium by addition of potassium molybdate (K2MoO4). In situ powder X-ray diffraction experiments were then conducted to study the hydrogen reduction of these samples. We especially focused on the influence of the alkali content and on gaining insight into the importance of the intermediary product γ-Mo4O11. During the reduction process, MoO2 is formed from the reduction of MoO3, which then reacts with the starting material to form γ-Mo4O11. With increasing potassium content, the reduction rate is decreased and the fractional content of γ-Mo4O11 built up during the reduction process is increased. As evident from bulk sample reduction, this results in a significant increase in the grain size visualized via scanning electron microscopy. Our investigations once again underline the importance of γ-Mo4O11 on the morphology of the resulting MoO2 powder.