Search Results

Now showing 1 - 2 of 2
  • Item
    Palladium-catalyzed intermolecular transthioetherification of aryl halides with thioethers and thioesters
    (Cambridge : RSC, 2020) Li, Yahui; Bao, Gao; Wu, Xiao-Feng
    Functional group transfer reactions are an important synthetic tool in modern organic synthesis. Herein, we developed a new palladium-catalyzed intermolecular transthioetherification reaction of aryl halides with thioethers and thioesters. The synthetic utility and practicality of this catalytic protocol are demonstrated in a wide range of successful transformations (>70 examples). This catalytic protocol is applicable in carbonylative coupling processes as well, and the first example of carbonylative methylthioesterification of aryl halides has been achieved. Notably, this work also provides an approach to using natural products, such as methionine and selenomethionine, as the functional group sources. This journal is © The Royal Society of Chemistry.
  • Item
    General and selective deoxygenation by hydrogen using a reusable earth-abundant metal catalyst
    (Washington, D.C. : American Association for the Advancement of Science, 2019) Schwob, T.; Kunnas, P.; De, Jonge, N.; Papp, C.; Steinrück, H.-P.; Kempe, R.
    Chemoselective deoxygenation by hydrogen is particularly challenging but crucial for an efficient late-stage modification of functionality-laden fine chemicals, natural products, or pharmaceuticals and the economic upgrading of biomass-derived molecules into fuels and chemicals. We report here on a reusable earth-abundant metal catalyst that permits highly chemoselective deoxygenation using inexpensive hydrogen gas. Primary, secondary, and tertiary alcohols as well as alkyl and aryl ketones and aldehydes can be selectively deoxygenated, even when part of complex natural products, pharmaceuticals, or biomass-derived platform molecules. The catalyst tolerates many functional groups including hydrogenation-sensitive examples. It is efficient, easy to handle, and conveniently synthesized from a specific bimetallic coordination compound and commercially available charcoal. Selective, sustainable, and cost-efficient deoxygenation under industrially viable conditions seems feasible. © 2019 The Authors.