Search Results

Now showing 1 - 3 of 3
  • Item
    General and selective synthesis of primary amines using Ni-based homogeneous catalysts
    (Cambridge : RSC, 2020) Murugesan, Kathiravan; Wei, Zhihong; Chandrashekhar, Vishwas G.; Jiao, Haijun; Beller, Matthias; Jagadeesh, Rajenahally V.
    The development of base metal catalysts for industrially relevant amination and hydrogenation reactions by applying abundant and atom economical reagents continues to be important for the cost-effective and sustainable synthesis of amines which represent highly essential chemicals. In particular, the synthesis of primary amines is of central importance because these compounds serve as key precursors and central intermediates to produce value-added fine and bulk chemicals as well as pharmaceuticals, agrochemicals and materials. Here we report a Ni-triphos complex as the first Ni-based homogeneous catalyst for both reductive amination of carbonyl compounds with ammonia and hydrogenation of nitroarenes to prepare all kinds of primary amines. Remarkably, this Ni-complex enabled the synthesis of functionalized and structurally diverse benzylic, heterocyclic and aliphatic linear and branched primary amines as well as aromatic primary amines starting from inexpensive and easily accessible carbonyl compounds (aldehydes and ketones) and nitroarenes using ammonia and molecular hydrogen. This Ni-catalyzed reductive amination methodology has been applied for the amination of more complex pharmaceuticals and steroid derivatives. Detailed DFT computations have been performed for the Ni-triphos based reductive amination reaction, and they revealed that the overall reaction has an inner-sphere mechanism with H2metathesis as the rate-determining step. © The Royal Society of Chemistry 2020.
  • Item
    Ultrathin two-dimensional conjugated metal– organic framework single-crystalline nanosheets enabled by surfactant-assisted synthesis
    (Cambridge : RSC, 2020) Wang, Zhonghao; Wang, Gang; Qi, Haoyuan; Wang, Mao; Wang, Mingchao; Park, SangWook; Wang, Huaping; Yu, Minghao; Kaiser, Ute; Fery, Andreas; Zhou, Shengqiang; Dong, Renhao; Feng, Xinliang
    Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have recently emerged for potential applications in (opto-)electronics, chemiresistive sensing, and energy storage and conversion, due to their excellent electrical conductivity, abundant active sites, and intrinsic porous structures. However, developing ultrathin 2D c-MOF nanosheets (NSs) for facile solution processing and integration into devices remains a great challenge, mostly due to unscalable synthesis, low yield, limited lateral size and low crystallinity. Here, we report a surfactant-assisted solution synthesis toward ultrathin 2D c-MOF NSs, including HHB-Cu (HHB = hexahydroxybenzene), HHB-Ni and HHTP-Cu (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene). For the first time, we achieve single-crystalline HHB-Cu(Ni) NSs featured with a thickness of 4-5 nm (∼8-10 layers) and a lateral size of 0.25-0.65 μm2, as well as single-crystalline HHTP-Cu NSs with a thickness of ∼5.1 ± 2.6 nm (∼10 layers) and a lateral size of 0.002-0.02 μm2. Benefiting from the ultrathin feature, the synthetic NSs allow fast ion diffusion and high utilization of active sites. As a proof of concept, when serving as a cathode material for Li-ion storage, HHB-Cu NSs deliver a remarkable rate capability (charge within 3 min) and long-term cycling stability (90% capacity retention after 1000 cycles), superior to the corresponding bulk materials and other reported MOF cathodes. This journal is © The Royal Society of Chemistry.
  • Item
    Stabilization of the ζ-Cu10Sn3 Phase by Ni at Soldering-Relevant Temperatures
    (Heidelberg : Springer Verlag, 2020) Wieser, C.; Hügel, W.; Martin, S.; Freudenberger, J.; Leineweber, A.
    A current issue in electrical engineering is the enhancement of the quality of solder joints. This is mainly associated with the ongoing electrification of transportation as well as the miniaturization of (power) electronics. For the reliability of solder joints, intermetallic phases in the microstructure of the solder are of great importance. The formation of the intermetallic phases in the Cu-Sn solder system was investigated for different annealing temperatures between 472 K and 623 K using pure Cu as well as Cu-1at.%Ni and Cu-3at.%Ni substrate materials. These are relevant for lead frame materials in electronic components. The Cu and Cu-Ni alloys were in contact to galvanic plated Sn. This work is focused on the unexpected formation of the hexagonal ζ-(Cu,Ni)10Sn3 phase at annealing temperatures of 523–623 K, which is far below the eutectoid decomposition temperature of binary ζ-Cu10Sn3 of about 855 K. By using scanning electron microscopy, energy dispersive X-ray spectroscopy, electron backscatter diffraction and X-ray diffraction the presence of the ζ phase was confirmed and its structural properties were analyzed.