Search Results

Now showing 1 - 3 of 3
  • Item
    Scalable synthesis and polymerisation of a β-angelica lactone derived monomer
    (Cambridge : RSC, 2020) Dell'Acqua, Andrea; Stadler, Bernhard M.; Kirchhecker, Sarah; Tin, Sergey; de Vries, Johannes G.
    Bio-based levulinic acid is easily ring-closed to α-angelica lactone (α-AL). α-AL can be isomerized to the conjugated β-AL under the influence of base, but since this is an equilibrium mixture it is very hard to devise a scalable process that would give pure β-AL. This problem was circumvented by distilling the equilibrium mixture to obtain a 90 : 10 mixture of β-and α-AL in 88% yield. This mixture was used for Diels-Alder reactions on 3 terpenes and on cyclopentadiene in up to 100 g scale. The latter DA adduct was subjected to a ROMP reaction catalysed by the Grubbs II catalyst. The resulting polymer has some similarities to poly-norbornene but is more polar. The polymer can be processed into films with very good transparency. © The Royal Society of Chemistry.
  • Item
    Ultrathin structures derived from interfacially modified polymeric nanocomposites to curb electromagnetic pollution
    (Cambridge : Royal Society of Chemistry, 2021) Sushmita, Kumari; Formanek, Petr; Fischer, Dieter; Pötschke, Petra; Madras, Giridhar; Bose, Suryasarathi
    The use of electronic devices and wireless networks is increasing rapidly, and electromagnetic (EM) pollution remediation remains a challenge. We employed a unique approach to fabricate two ultrathin (approx. 53 μm) multilayered assemblies to address this. By sequentially stacking thin films of polyvinylidene difluoride (PVDF) and polycarbonate (PC) nanocomposites and interfacially locking them with a mutually miscible polymer (PMMA, polymethyl methacrylate), materials with enhanced structural properties and electromagnetic interference (EMI) shielding performance can be designed. Utilizing reduced graphene oxide (rGO) and molybdenum disulfide (MoS2) as a template, ferrite was grown on the surface to design two different nanohybrid structures (rGO–Fe3O4 and MoS2–Fe3O4). PVDF was composited with either rGO–Fe3O4 or MoS2–Fe3O4, and multiwall carbon nanotubes (CNTs) were dispersed in the PC component. As PC and PVDF are immiscible, their poor interface would result in inferior structural properties, which can be challenging in designing EMI shielding materials due to cyclic thermal fatigue. Hence, PMMA is sandwiched to interfacially stitch the components (PC and PVDF) and improve interfacial adhesion. This was confirmed using SEM/EDS and Raman mapping/imaging. The mechanical stability of the multilayered assemblies was characterized using a dynamic mechanical analyzer (DMA), and the storage modulus was found to be as high as 2767 MPa at 40 °C (@constant frequency and strain amplitude), for the multilayered film with rGO–Fe3O4 in PVDF, PMMA as a sandwich layer and CNTs in PC. A typical assembly of 9 multilayers (∼480 μm) with rGO–Fe3O4 in PVDF, and CNTs in PC, and interfacially stitched with PMMA gave rise to a high EMI shield effectiveness (SET) of −26.3 dB @ 26.5 GHz. This unique arrangement of a multilayered assembly suppressed EMI primarily by absorption.
  • Item
    Thermally triggered optical tuning of π-conjugated graft copolymers based on reversible Diels–Alder reaction
    (London : RSC Publishing, 2016) Ahner, J.; Micheel, M.; Kötteritzsch, J.; Dietzek, B.; Hager, M.D.
    In order to design a π-conjugated polymer film with tunable optical properties by thermally triggered activation of energy transfer after processing, two monodisperse phenylene ethynylene based oligomers with different optical properties were synthesized and attached to aliphatic polymers as π-conjugated side chains. Subsequently, the exchange of the side chain chromophores between the prepared donor and acceptor graft polymers in the solid state based on a reversible Diels–Alder reaction was studied in detail. The resulting donor–acceptor graft copolymer exhibits intra polymer energy transfer upon excitation of the donor moiety. The photophysical properties of the original and exchanged graft copolymers were investigated by means of absorption and emission spectroscopy. This novel concept opens the possibility for optical tuning of π-conjugated polymer films after processing as well as applications as thermally triggered sensor systems.