Search Results

Now showing 1 - 7 of 7
  • Item
    Selective hydrogenation of fluorinated arenes using rhodium nanoparticles on molecularly modified silica
    (London : RSC Publ., 2020) Kacem, Souha; Emondts, Meike; Bordet, Alexis; Leitner, Walter
    The production of fluorinated cyclohexane derivatives is accomplished through the selective hydrogenation of readily available fluorinated arenes using Rh nanoparticles on molecularly modified silica supports (Rh@Si-R) as highly effective and recyclable catalysts. The catalyst preparation comprises grafting non-polar molecular entities on the SiO2 surface generating a hydrophobic environment for controlled deposition of well-defined rhodium particles from a simple organometallic precursor. A broad range of fluorinated cyclohexane derivatives was shown to be accessible with excellent efficacy (0.05-0.5 mol% Rh, 10-55 bar H2, 80-100 °C, 1-2 h), including industrially relevant building blocks. Addition of CaO as scavenger for trace amounts of HF greatly improves the recyclability of the catalytic system and prevents the risks associated to the presence of HF, without compromising the activity and selectivity of the reaction. © The Royal Society of Chemistry.
  • Item
    Intersubband Transition Engineering in the Conduction Band of Asymmetric Coupled Ge/SiGe Quantum Wells
    (Basel : MDPI, 2020) Persichetti, Luca; Montanari, Michele; Ciano, Chiara; Di Gaspare, Luciana; Ortolani, Michele; Baldassarre, Leonetta; Zoellner, Marvin; Mukherjee, Samik; Moutanabbir, Oussama; Capellini, Giovanni; Virgilio, Michele; De Seta, Monica
    n-type Ge/SiGe asymmetric coupled quantum wells represent the building block of a variety of nanoscale quantum devices, including recently proposed designs for a silicon-based THz quantum cascade laser. In this paper, we combine structural and spectroscopic experiments on 20-module superstructures, each featuring two Ge wells coupled through a Ge-rich SiGe tunnel barrier, as a function of the geometry parameters of the design and the P dopant concentration. Through a comparison of THz spectroscopic data with numerical calculations of intersubband optical absorption resonances, we demonstrated that it is possible to tune, by design, the energy and the spatial overlap of quantum confined subbands in the conduction band of the heterostructures. The high structural/interface quality of the samples and the control achieved on subband hybridization are promising starting points towards a working electrically pumped light-emitting device. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    On Silylated Oxonium and Sulfonium Ions and Their Interaction with Weakly Coordinating Borate Anions
    (Weinheim : Wiley-VCH, 2019) Bläsing, Kevin; Labbow, Rene; Michalik, Dirk; Reiß, Fabian; Schul, Axel; Villinger, Alexander; Walker, Svenja
    Attempts have been made to prepare salts with the labile tris(trimethylsilyl)chalconium ions, [(Me3Si)3E]+ (E=O, S), by reacting [Me3Si-H-SiMe3][B(C6F5)4] and Me3Si[CB] (CB−=carborate=[CHB11H5Cl6]−, [CHB11Cl11]−) with Me3Si-E-SiMe3. In the reaction of Me3Si-O-SiMe3 with [Me3Si-H-SiMe3][B(C6F5)4], a ligand exchange was observed in the [Me3Si-H-SiMe3]+ cation leading to the surprising formation of the persilylated [(Me3Si)2(Me2(H)Si)O]+ oxonium ion in a formal [Me2(H)Si]+ instead of the desired [Me3Si]+ transfer reaction. In contrast, the expected homoleptic persilylated [(Me3Si)3S]+ ion was formed and isolated as [B(C6F5)4]− and [CB]− salt, when Me3Si-S-SiMe3 was treated with either [Me3Si-H-SiMe3][B(C6F5)4] or Me3Si[CB]. However, the addition of Me3Si[CB] to Me3Si-O-SiMe3 unexpectedly led to the release of Me4Si with simultaneous formation of a cyclic dioxonium dication of the type [Me3Si-μO-SiMe2]2[CB]2 in an anion-mediated reaction. DFT studies on structure, bonding and thermodynamics of the [(Me3Si)3E]+ and [(Me3Si)2(Me2(H)Si)E]+ ion formation are presented as well as mechanistic investigations on the template-driven transformation of the [(Me3Si)3E]+ ion into a cyclic dichalconium dication [Me3Si-μE-SiMe2]22+. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    In situ Raman spectroscopy on silicon nanowire anodes integrated in lithium ion batteries
    (Pennington, NJ : Electrochemical Society Inc., 2019) Krause, A.; Tkacheva, O.; Omar, A.; Langklotz, U.; Giebeler, L.; Dörfler, S.; Fauth, F.; Mikolajick, T.; Weber, W.M.
    Rapid decay of silicon anodes during lithiation poses a significant challenge in application of silicon as an anode material in lithium ion batteries. In situ Raman spectroscopy is a powerful method to study the relationship between structural and electrochemical data during electrode cycling and to allow the observation of amorphous as well as liquid and transient species in a battery cell. Herein, we present in situ Raman spectroscopy on high capacity electrode using uncoated and carbon-coated silicon nanowires during first lithiation and delithiation cycle in an optimized lithium ion battery setup and complement the results with operando X-ray reflection diffraction measurements. During lithiation, we were able to detect a new Raman signal at 1859 cm−1 especially on uncoated silicon nanowires. The detailed in situ Raman measurement of the first lithiation/delithiation cycle allowed to differentiate between morphology changes of the electrode as well as interphase formation from electrolyte components.
  • Item
    An efficient two-polymer binder for high-performance silicon nanoparticle-based lithium-ion batteries: A systematic case study with commercial polyacrylic acid and polyvinyl butyral polymers
    (Pennington, NJ : Electrochemical Society Inc., 2019) Urbanski, A.; Omar, A.; Guo, J.; Janke, A.; Reuter, U.; Malanin, M.; Schmidt, F.; Jehnichen, D.; Holzschuh, M.; Simon, F.; Eichhorn, K.-J.; Giebeler, L.; Uhlmann, P.
    Silicon is one of the most promising anode materials for high energy density lithium ion batteries (LIBs) due to its high theoretical capacity and natural abundance. Unfortunately, significant challenges arise due to the large volume change of silicon upon lithiation/delithiation which inhibit its broad commercialization. An advanced binder can, in principle, reversibly buffer the volume change, and maintain strong adhesion toward various components as well as the current collector. In this work, we present the first report on the applicability of polyvinyl butyral (PVB) polymer as a binder component for silicon nanoparticles-based LIBs. Characteristic binder properties of commercial PVB and polyacrylic acid (PAA) polymers are compared. The work focuses on polymer mixtures of PVB polymers with PAA, for an improved binder composition which incorporates their individual advantages. Different ratios of polymers are systematically studied to understand the effect of particular polymer chains, functional groups and mass fractions, on the electrochemical performance. We demonstrate a high-performance polymer mixture which exhibits good binder-particle interaction and strong adhesion to Cu-foil. PAA/PVB-based electrode with a Si loading of ∼1 mg/cm2 tested between 0.01 and 1.2 V vs. Li/Li+ demonstrate specific capacities as high as 2170 mAh/g after the first hundred cycles. © The Author(s) 2019.
  • Item
    Optically transparent vertical silicon nanowire arrays for live-cell imaging
    (London : Biomed Central, 2021) Elnathan, Roey; Holle, Andrew W.; Young, Jennifer; George, Marina; Heifler, Omri; Goychuk, Andriy; Frey, Erwin; Kemkemer, Ralf; Spatz, Joachim P.; Kosloff, Alon; Patolsky, Fernando; Voelcker, Nicolas H.
    Programmable nano-bio interfaces driven by tuneable vertically configured nanostructures have recently emerged as a powerful tool for cellular manipulations and interrogations. Such interfaces have strong potential for ground-break-ing advances, particularly in cellular nanobiotechnology and mechanobiology. However, the opaque nature of many nanostructured surfaces makes non-destructive, live-cell characterization of cellular behavior on vertically aligned nanostructures challenging to observe. Here, a new nanofabrication route is proposed that enables harvesting of vertically aligned silicon (Si) nanowires and their subsequent transfer onto an optically transparent substrate, with high efficiency and without artefacts. We demonstrate the potential of this route for efficient live-cell phase contrast imaging and subsequent characterization of cells growing on vertically aligned Si nanowires. This approach provides the first opportunity to understand dynamic cellular responses to a cell-nanowire interface, and thus has the potential to inform the design of future nanoscale cellular manipulation technologies.
  • Item
    Editors' Choice - Precipitation of Suboxides in Silicon, their Role in Gettering of Copper Impurities and Carrier Recombination
    (Pennington, NJ : ECS, 2020) Kissinger, G.; Kot, D.; Huber, A.; Kretschmer, R.; Müller, T.; Sattler, A.
    This paper describes a theoretical investigation of the phase composition of oxide precipitates and the corresponding emission of self-interstitials at the minimum of the free energy and their evolution with increasing number of oxygen atoms in the precipitates. The results can explain the compositional evolution of oxide precipitates and the role of self-interstitials therein. The formation of suboxides at the edges of SiO2 precipitates after reaching a critical size can explain several phenomena like gettering of Cu by segregation to the suboxide region and lifetime reduction by recombination of minority carriers in the suboxide. It provides an alternative explanation, based on minimized free energy, to the theory of strained and unstrained plates. A second emphasis was payed to the evolution of the morphology of oxide precipitates. Based on the comparison with results from scanning transmission electron microscopy the sequence of morphology evolution of oxide precipitates was deduced. It turned out that it is opposite to the sequence assumed until now. © 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.