Search Results

Now showing 1 - 2 of 2
  • Item
    The Taste of Waste: The Edge of Eggshell Over Calcium Carbonate in Acrylonitrile Butadiene Rubber
    (New York, NY [u.a.] : Springer Science + Business Media B.V., 2019) Bhagavatheswaran, Eshwaran Subramani; Das, Amit; Rastin, Hadi; Saeidi, Hoda; Jafari, Seyed Hassan; Vahabi, Henri; Najafi, Farhood; Khonakdar, Hossein Ali; Formela, Krzysztof; Jouyandeh, Maryam; Zarrintaj, Payam; Saeb, Mohammad Reza
    Rubber technology experiences a new age by the use of biowaste or natural fillers. In this regard, taking properties of reinforcing agents from biowaste fillers remains as the challenging matter. Chicken eggshell (ES) biowaste has recently been introduced to substitute calcium carbonate (CaCO3) duo to its superior properties and low price. In this work, composites based on acrylonitrile butadiene rubber (NBR) reinforced with ES and CaCO3 microfillers at various loading levels were prepared and characterized. To improve the interactions between fillers and the NBR matrix, ES and CaCO3 were surface-functionalized using a terpolymer, namely poly(vinyl 2-pyrrolidone-co-maleic acid-co-acrylic acid). Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) were used to characterize the modified fillers. The incorporation of the functionalized fillers resulted in a significant rise in the maximum torque according to the rheometric measurements. The Young’s modulus of the ES-based and CaCO3-based compounds showed a mild improvement over a wide range of filler contents. The elongation at break of the NBR composites, however, was dependent on the filler content. This work provides exciting opportunities for the design of novel and innovative coupling agents to be used in rubber applications. © 2019, The Author(s).
  • Item
    KnowVolution of the Polymer-Binding Peptide LCI for Improved Polypropylene Binding
    (Basel : MDPI, 2018) Rübsam, Kristin; Davari, Mehdi D.; Jakob, Felix; Schwaneberg, Ulrich
    The functionalization of polymer surfaces by polymer-binding peptides offers tremendous opportunities for directed immobilization of enzymes, bioactive peptides, and antigens. The application of polymer-binding peptides as adhesion promoters requires reliable and stable binding under process conditions. Molecular modes of interactions between material surfaces, peptides, and solvent are often not understood to an extent that enables (semi-) rational design of polymer-binding peptides, hindering the full exploitation of their potential. Knowledge-gaining directed evolution (KnowVolution) is an efficient protein engineering strategy that facilitates tailoring protein properties to application demands through a combination of directed evolution and computational guided protein design. A single round of KnowVolution was performed to gain molecular insights into liquid chromatography peak I peptide, 47 aa (LCI)-binding to polypropylene (PP) in the presence of the competing surfactant Triton X-100. KnowVolution yielded a total of 8 key positions (D19, S27, Y29, D31, G35, I40, E42, and D45), which govern PP-binding in the presence of Triton X-100. The recombination of two of the identified amino acid substitutions (Y29R and G35R; variant KR-2) yielded a 5.4 ± 0.5-fold stronger PP-binding peptide compared to LCI WT in the presence of Triton X-100 (1 mM). The LCI variant KR-2 shows a maximum binding capacity of 8.8 ± 0.1 pmol/cm2 on PP in the presence of Triton X-100 (up to 1 mM). The KnowVolution approach enables the development of polymer-binding peptides, which efficiently coat and functionalize PP surfaces and withstand surfactant concentrations that are commonly used, such as in household detergents.