Search Results

Now showing 1 - 7 of 7
  • Item
    FLIm and raman spectroscopy for investigating biochemical changes of bovine pericardium upon genipin cross-linking
    (Basel : MDPI, 2020) Shaik, Tanveer Ahmed; Alfonso-Garcia, Alba; Richter, Martin; Korinth, Florian; Krafft, Christoph; Marcu, Laura; Popp, Jürgen
    Biomaterials used in tissue engineering and regenerative medicine applications benefit from longitudinal monitoring in a non-destructive manner. Label-free imaging based on fluorescence lifetime imaging (FLIm) and Raman spectroscopy were used to monitor the degree of genipin (GE) cross-linking of antigen-removed bovine pericardium (ARBP) at three incubation time points (0.5, 1.0, and 2.5 h). Fluorescence lifetime decreased and the emission spectrum redshifted compared to that of uncross-linked ARBP. The Raman signature of GE-ARBP was resonance-enhanced due to the GE cross-linker that generated new Raman bands at 1165, 1326, 1350, 1380, 1402, 1470, 1506, 1535, 1574, 1630, 1728, and 1741 cm-1. These were validated through density functional theory calculations as cross-linker-specific bands. A multivariate multiple regression model was developed to enhance the biochemical specificity of FLIm parameters fluorescence intensity ratio (R2 = 0.92) and lifetime (R2 = 0.94)) with Raman spectral results. FLIm and Raman spectroscopy detected biochemical changes occurring in the collagenous tissue during the cross-linking process that were characterized by the formation of a blue pigment which affected the tissue fluorescence and scattering properties. In conclusion, FLIm parameters and Raman spectroscopy were used to monitor the degree of cross-linking non-destructively. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Treatment of Focal Cartilage Defects in Minipigs with Zonal Chondrocyte/Mesenchymal Progenitor Cell Constructs
    (Basel : Molecular Diversity Preservation International, 2019) Bothe, Friederike; Deubel, Anne-Kathrin; Hesse, Eliane; Lotz, Benedict; Groll, Jürgen; Werner, Carsten; Richter, Wiltrud; Hagmann, Sebastien
    Despite advances in cartilage repair strategies, treatment of focal chondral lesions remains an important challenge to prevent osteoarthritis. Articular cartilage is organized into several layers and lack of zonal organization of current grafts is held responsible for insufficient biomechanical and biochemical quality of repair-tissue. The aim was to develop a zonal approach for cartilage regeneration to determine whether the outcome can be improved compared to a non-zonal strategy. Hydrogel-filled polycaprolactone (PCL)-constructs with a chondrocyte-seeded upper-layer deemed to induce hyaline cartilage and a mesenchymal stromal cell (MSC)-containing bottom-layer deemed to induce calcified cartilage were compared to chondrocyte-based non-zonal grafts in a minipig model. Grafts showed comparable hardness at implantation and did not cause visible signs of inflammation. After 6 months, X-ray microtomography (_CT)-analysis revealed significant bone-loss in both treatment groups compared to empty controls. PCL-enforcement and some hydrogel-remnants were retained in all defects, but most implants were pressed into the subchondral bone. Despite important heterogeneities, both treatments reached a significantly lower modified O’Driscoll-score compared to empty controls. Thus, PCL may have induced bone-erosion during joint loading and misplacement of grafts in vivo precluding adequate permanent orientation of zones compared to surrounding native cartilage. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Viscoelastic Behavior of Embroidered Scaffolds for ACL Tissue Engineering Made of PLA and P(LA-CL) After In Vitro Degradation
    (Basel : Molecular Diversity Preservation International, 2019) Hahn, Judith; Schulze-Tanzil, Schulze-Tanzil; Schröpfer, Michaela; Meyer, Michael; Gögele, Clemens; Hoyer, Mariann; Spickenheuer, Axel; Heinrich, Gert; Breier, Annette
    A rupture of the anterior cruciate ligament (ACL) is the most common knee ligament injury. Current applied reconstruction methods have limitations in terms of graft availability and mechanical properties. A new approach could be the use of a tissue engineering construct that temporarily reflects the mechanical properties of native ligament tissues and acts as a carrier structure for cell seeding. In this study, embroidered scaffolds composed of polylactic acid (PLA) and poly(lactic-co-"-caprolactone) (P(LA-CL)) threads were tested mechanically for their viscoelastic behavior under in vitro degradation. The relaxation behavior of both scaffold types (moco: mono-component scaffold made of PLA threads, bico: bi-component scaffold made of PLA and P(LA-CL) threads) was comparable to native lapine ACL. Most of the lapine ACL cells survived 32 days of cell culture and grew along the fibers. Cell vitality was comparable for moco and bico scaffolds. Lapine ACL cells were able to adhere to the polymer surfaces and spread along the threads throughout the scaffold. The mechanical behavior of degrading matrices with and without cells showed no significant differences. These results demonstrate the potential of embroidered scaffolds as an ACL tissue engineering approach. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Sv40 transfected human anterior cruciate ligament derived ligamentocytes—suitable as a human in vitro model for ligament reconstruction?
    (Basel : Molecular Diversity Preservation International, 2020) Schulze-Tanzil, Gundula; Arnold, Philipp; Gögele, Clemens; Hahn, Judith; Breier, Annette; Meyer, Michael; Kohl, Benjamin; Schröpfer, Michaela; Schwarz, Silke
    Cultured human primary cells have a limited lifespan undergoing dedifferentiation or senescence. Anterior cruciate ligaments (ACL) are hypocellular but tissue engineering (TE) requires high cell numbers. Simian virus (SV) 40 tumor (T) antigen expression could extend the lifespan of cells. This study aimed to identify cellular changes induced by SV40 expression in human ACL ligamentocytes by comparing them with non-transfected ligamentocytes and tissue of the same donor to assess their applicability as TE model. Human ACL ligamentocytes (40-year-old female donor after ACL rupture) were either transfected with a SV40 plasmid or remained non-transfected (control) before monitored for SV40 expression, survival, and DNA content. Protein expression of cultured ligamentocytes was compared with the donor tissue. Ligamentocyte spheroids were seeded on scaffolds embroidered either from polylactic acid (PLA) threads solely or combined PLA and poly (L-lactide-co-e-caprolactone) (P(LA-CL)) threads. These scaffolds were further functionalized with fluorination and fibrillated collagen foam. Cell distribution and survival were monitored for up to five weeks. The transfected cells expressed the SV40 antigen throughout the entire observation time, but often exhibited random and incomplete cell divisions with significantly more dying cells, significantly more DNA and more numerous nucleoli than controls. The expression profile of non-transfected and SV40-positive ligamentocytes was similar. In contrast to controls, SV40-positive cells formed larger spheroids, produced less vimentin and focal adhesions and died on the scaffolds after 21 d. Functionalized scaffolds supported human ligamentocyte growth. SV40 antigen expressing ligamentocytes share many properties with their non-transfected counterparts suggesting them as a model, however, applicability for TE is limited. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Naturally prefabricated marine biomaterials: Isolation and applications of flat chitinous 3D scaffolds from Ianthella labyrinthus (demospongiae: Verongiida)
    (Basel : Molecular Diversity Preservation International, 2019) Schubert, Mario; Binnewerg, Björn; Voronkina, Alona; Muzychka, Lyubov; Wysokowski, Marcin; Petrenko, Iaroslav; Kovalchuk, Valentine; Tsurkan, Mikhail; Martinovic, Rajko; Bechmann, Nicole; Ivanenko, Viatcheslav N.; Fursov, Andriy; Smolii, Oleg B.; Fromont, Jane; Joseph, Yvonne; Bornstein, Stefan R.; Giovine, Marco; Erpenbeck, Dirk; Guan, Kaomei; Ehrlich, Hermann
    Marine sponges remain representative of a unique source of renewable biological materials. The demosponges of the family Ianthellidae possess chitin-based skeletons with high biomimetic potential. These three-dimensional (3D) constructs can potentially be used in tissue engineering and regenerative medicine. In this study, we focus our attention, for the first time, on the marine sponge Ianthella labyrinthus Bergquist & Kelly-Borges, 1995 (Demospongiae: Verongida: Ianthellidae) as a novel potential source of naturally prestructured bandage-like 3D scaffolds which can be isolated simultaneously with biologically active bromotyrosines. Specifically, translucent and elastic flat chitinous scaffolds have been obtained after bromotyrosine extraction and chemical treatments of the sponge skeleton with alternate alkaline and acidic solutions. For the first time, cardiomyocytes differentiated from human induced pluripotent stem cells (iPSC-CMs) have been used to test the suitability of I. labyrinthus chitinous skeleton as ready-to-use scaffold for their cell culture. Results reveal a comparable attachment and growth on isolated chitin-skeleton, compared to scaffolds coated with extracellular matrix mimetic Geltrex®. Thus, the natural, unmodified I. labyrinthus cleaned sponge skeleton can be used to culture iPSC-CMs and 3D tissue engineering. In addition, I. labyrinthus chitin-based scaffolds demonstrate strong and efficient capability to absorb blood deep into the microtubes due to their excellent capillary effect. These findings are suggestive of the future development of new sponge chitin-based absorbable hemostats as alternatives to already well recognized cellulose-based fabrics. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Redox-triggerable firefly luciferin-bioinspired hydrogels as injectable and cell-encapsulating matrices
    (Cambridge : RSC Publ., 2022) Jin, Minye; Gläser, Alisa; Paez, Julieta I.
    Stimuli-responsive hydrogels are smart materials that respond to variations caused by external stimuli and that are currently exploited for biomedical applications such as biosensing, drug delivery and tissue engineering. The development of stimuli-responsive hydrogels with defined user control is relevant to realize materials with advanced properties. Recently, our group reported firefly luciferin-inspired hydrogel matrices for 3D cell culture. This platform exhibited advantages like rapid gelation rate and tunability of mechanical and biological properties. However, this first molecular design did not allow fine control of the gelation onset, which restricts application as a cell-encapsulating matrice with injectable and processable properties. In this article, we endow the firefly luciferin-inspired hydrogels with redox-triggering capability, to overcome the limitations of the previous system and to widen its application range. We achieve this goal by introducing protected macromers as hydrogel polymeric precursors that can be activated in the presence of a mild reductant, to trigger gel formation in situ with a high degree of control. We demonstrate that the regulation of molecular parameters (e.g., structure of the protecting group, reductant type) and environmental parameters (e.g., pH, temperature) of the deprotection reaction can be exploited to modulate materials properties. This redox-triggerable system enables precise control over gelation onset and kinetics, thus facilitating its utilization as an injectable hydrogel without negatively impacting its cytocompatibility. Our findings expand the current toolkit of chemically-based stimuli-responsive hydrogels.
  • Item
    ROMP-Derived cyclooctene-based monolithic polymeric materials reinforced with inorganic nanoparticles for applications in tissue engineering
    (Frankfurt, M : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2010) Weichelt, F.; Lenz, S.; Tiede, S.; Reinhardt, I.; Frerich, B.; Buchmeiser, M.R.
    Porous monolithic inorganic/polymeric hybrid materials have been prepared via ring-opening metathesis copolymerization starting from a highly polar monomer, i.e., ciw-5-cyclooctene-trans-1,2-diol and a 7-oxanorborn-2-ene-derived cross-linker in the presence of porogenic solvents and two types of inorganic nanoparticles (i.e., CaCO3 and calcium hydroxyapatite, respectively) using the third-generation Grubbs initiator RuCl2(Py) 2(IMesH2)(CHPh). The physico-chemical properties of the monolithic materials, such as pore size distribution and microhardness were studied with regard to the nanoparticle type and content. Moreover, the reinforced monoliths were tested for the possible use as scaffold materials in tissue engineering, by carrying out cell cultivation experiments with human adipose tissue-derived stromal cells. © 2010 Weichelt et al; licensee Beilstein-Institut.