Search Results

Now showing 1 - 7 of 7
  • Item
    A method for determination of length distributions of multiwalled carbon nanotubes before and after melt processing
    (New York, NY [u.a.] : Pergamon Press, 2011) Krause, Beate; Boldt, Regine; Pötschke, Petra
    A relatively simple method to determine the length distribution of carbon nanotubes (CNTs) before and after melt processing was developed. This involves the selection of a suitable solvent for dispersing pristine CNTs as well as to dissolve the matrix of melt mixed composites and the choice of an appropriate nanotube concentration. The length of suitably individualized CNTs was visualized using transmission electron microscopy and length distributions were measured using image analysis. Examples are shown for Baytubes® C150HP and Nanocyl™ NC7000 and their melt mixed composites with polycarbonate where the same procedure was applied to both, measuring the initial length distribution and the distribution after recovering from the composites. These results indicated a significant shortening after melt processing up to 30% of the initial length. © 2010 Elsevier Ltd. All rights reserved.
  • Item
    Tailoring the stoichiometry of C3N4 nanosheets under electron beam irradiation
    (Cambridge : RSC Publ., 2021) Mendes, Rafael G.; Ta, Huy Q.; Yang, Xiaoqin; Bachmatiuk, Alicja; Praus, Petr; Mamakhel, Aref; Iversen, Bo B.; Su, Ren; Gemming, Thomas; Rümmeli, Mark H.
    Two-dimensional polymeric graphitic carbon nitride (g-C3N4) is a low-cost material with versatile properties that can be enhanced by the introduction of dopant atoms and by changing the degree of polymerization/stoichiometry, which offers significant benefits for numerous applications. Herein, we investigate the stability of g-C3N4 under electron beam irradiation inside a transmission electron microscope operating at different electron acceleration voltages. Our findings indicate that the degradation of g-C3N4 occurs with N species preferentially removed over C species. However, the precise nitrogen group from which N is removed from g-C3N4 (C–N–C, [double bond, length as m-dash]NH or –NH2) is unclear. Moreover, the rate of degradation increases with decreasing electron acceleration voltage, suggesting that inelastic scattering events (radiolysis) dominate over elastic events (knock-on damage). The rate of degradation by removing N atoms is also sensitive to the current density. Hence, we demonstrate that both the electron acceleration voltage and the current density are parameters with which one can use to control the stoichiometry. Moreover, as N species were preferentially removed, the d-spacing of the carbon nitride structure increased. These findings provide a deeper understanding of g-C3N4.
  • Item
    Halloysite Nanotubes Noncovalently Functionalised with SDS Anionic Surfactant and PS-b-P4VP Block Copolymer for Their Effective Dispersion in Polystyrene as UV-Blocking Nanocomposite Films
    (New York, NY : Hindawi Publ., 2017) Tzounis, Lazaros; Herlekar, Shreya; Tzounis, Antonios; Charisiou, Nikolaos D.; Goula, Maria; Stamm, Manfred
    Asimple and versatilemethod is reported for the noncovalent functionalisation of natural and "green" halloysite nanotubes (HNTs) allowing their effective dispersion in a polystyrene (PS) thermoplastic matrix via solvent mixing. Initially, HNTs (pristine HNTs) were modified with physically adsorbed surfactant molecules of sodium dodecyl sulphate (SDS) and PS-b-P4VP [P4VP: poly(4-vinylpyridine)] block copolymer (BCP). Hereafter, SDS and BCP modified HNTs will be indicated as SDS-m-HNT and BCP-m-HNT.Nanocomposite films with 1, 2, and 5 wt.%HNTloadingswere prepared, abbreviated as PS-SDS-m-HNT1, PS-SDS-m-HNT2, and PS-SDS-m-HNT5 and PS-BCP-m-HNT1, PS-BCP-m-HNT2, and PS-BCP-m-HNT5 (where 1, 2, and 5 correspond to the wt.% of HNTs). All nanocomposites depicted improved thermal degradation compared to the neat PS as revealed by thermogravimetric analysis (TGA). Transmission electron microscopy (TEM) confirmed the good dispersion state of HNTs and the importance of modification by SDS and BCP. X-ray diffraction (XRD) studies showed the characteristic interlayer spacing between the two silicate layers of pristine and modified HNTs. The PS/HNT nanocomposite films exhibited excellent ultraviolent-visible (UV-vis) absorbance properties and their potential application as UV-filters could be envisaged.
  • Item
    Structure and Bottom-up Formation Mechanism of Multisheet Silica-Based Nanoparticles Formed in an Epoxy Matrix through an In Situ Process
    (Washington, DC : ACS Publ., 2021) Branda, Francesco; Bifulco, Aurelio; Jehnichen, Dieter; Parida, Dambarudhar; Pauer, Robin; Passaro, Jessica; Gaan, Sabyasachi; Pospiech, Doris; Durante, Massimo
    Organic/inorganic hybrid composite materials with the dispersed phases in sizes down to a few tens of nanometers raised very great interest. In this paper, it is shown that silica/epoxy nanocomposites with a silica content of 6 wt % may be obtained with an “in situ” sol–gel procedure starting from two precursors: tetraethyl orthosilicate (TEOS) and 3-aminopropyl-triethoxysilane (APTES). APTES also played the role of a coupling agent. The use of advanced techniques (bright-field high-resolution transmission electron microscopy, HRTEM, and combined small- and wide-angle X-ray scattering (SAXS/WAXS) performed by means of a multirange device Ganesha 300 XL+) allowed us to evidence a multisheet structure of the nanoparticles instead of the gel one typically obtained through a sol–gel route. A mechanism combining in a new manner well-assessed knowledge regarding sol–gel chemistry, emulsion formation, and Ostwald ripening allowed us to give an explanation for the formation of the observed lamellar nanoparticles.
  • Item
    Process induced skin-core morphology in injection molded polyamide 66
    (Basel : MDPI, 2020) Spoerer, Yvonne; Androsch, René; Jehnichen, Dieter; Kuehnert, Ines
    Polyamide 66 (PA 66) was injection-molded to obtain samples with a structure gradient between skin and core, as it was revealed by analysis of the semi-crystalline morphology using polarized-light optical microscopy (POM). Wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS) were employed to characterize thin sections with a thickness in the order of magnitude of 50 µm, allowing detection of crystals of different perfection, as a function of the distance from the surface. It was found that the transparent and non-spherulitic skin layer contains rather imperfect α-crystals while the perfection of α-crystals continuously increases with extending distance from the surface. Since variation of the molding conditions allows tailoring the skin-core morphology, the present study was performed to suggest a reliable route to map the presence of specific semi-crystalline morphologies in such samples
  • Item
    Synthesis and characterization of MgAl-DBS LDH/PLA composite by sonication-assisted masterbatch (SAM) melt mixing method
    (Cambridge : RSC, 2019) Quispe-Dominguez, Roger; Naseem, Sajid; Leuteritz, Andreas; Kuehnert, Ines
    This research work is based on the comparison of the mixing phenomena of magnesium-aluminum (MgAl) layered double hydroxides (LDHs) intercalated by dodecylbenzene sulfonate (MgAl-DBS) in poly(lactic acid) (PLA). Two mixing techniques were used to compare the dispersion of LDHs in PLA such as sonication-assisted masterbatch (SAM) melt mixing and direct melting (DM) methods. MgAl LDHs synthesized by the urea hydrolysis method and intercalated with DBS anions using anion exchange reaction and were used in different ratios in PLA (1.25, 2.5, and 5 wt%). MgAl LDHs and their anion intercalation were studied by the X-ray diffraction analysis (XRD) method. Different properties of LDH/PLA composites were compared to analyze the effect of these mixing techniques. Dispersion and exfoliation of LDHs in PLA were investigated by X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM). Influences on the rheological properties were evaluated by analyzing the complex viscosities (η*), storage modulus (G′) and loss modulus (G′′) by using a rheometer. The thermal properties, thermal stability and effect on crystallinity of composites made with the two mixing techniques were analyzed by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) respectively. The mixing mechanism and amount of MgAl-DBS LDHs have a notable effect on the properties of PLA composites with sonication-assisted masterbatch melt mixing techniques giving better dispersion of LDHs in PLA composites as compared to direct melt mixing. © The Royal Society of Chemistry.
  • Item
    Systematic tuning of segmented magnetic nanowires into three-dimensional arrays of 'bits'
    (London : RSC Publishing, 2017) Bochmann, S.; Fernandez-Pacheco, A.; Mačković, M.; Neff, A.; Siefermann, K.R.; Spiecker, E.; Cowburn, R.P.; Bachmann, J.
    A method is presented for the preparation of a three-dimensional magnetic data storage material system. The major ingredients are an inert nanoporous matrix prepared by anodization and galvanic plating of magnetic and non-magnetic metals in wire shape inside the cylindrical pores. The individual nanomagnets consist of a nickel-cobalt alloy, the composition of which is tuned systematically by adjusting the electrolytic bath composition at one optimal applied potential. The lowest magnetocrystalline anisotropy is obtained at the composition Ni60Co40, as quantified by superconducting quantum interference device magnetometry. Wires of this composition experience a pinning-free propagation of magnetic domain walls, as determined by single-wire magneto-optical Kerr effect magnetometry. Adding copper into the electrolyte allows one to generate segments of Ni60Co40 separated by non-magnetic copper. The segment structure is apparent in individual nanowires imaged by scanning electron microscopy, UV-photoelectron emission microscopy, and transmission electron microscopy. The single-domain structure of the wire segments is evidenced by magnetic force microscopy.