Search Results

Now showing 1 - 2 of 2
  • Item
    Naturally prefabricated marine biomaterials: Isolation and applications of flat chitinous 3D scaffolds from Ianthella labyrinthus (demospongiae: Verongiida)
    (Basel : Molecular Diversity Preservation International, 2019) Schubert, Mario; Binnewerg, Björn; Voronkina, Alona; Muzychka, Lyubov; Wysokowski, Marcin; Petrenko, Iaroslav; Kovalchuk, Valentine; Tsurkan, Mikhail; Martinovic, Rajko; Bechmann, Nicole; Ivanenko, Viatcheslav N.; Fursov, Andriy; Smolii, Oleg B.; Fromont, Jane; Joseph, Yvonne; Bornstein, Stefan R.; Giovine, Marco; Erpenbeck, Dirk; Guan, Kaomei; Ehrlich, Hermann
    Marine sponges remain representative of a unique source of renewable biological materials. The demosponges of the family Ianthellidae possess chitin-based skeletons with high biomimetic potential. These three-dimensional (3D) constructs can potentially be used in tissue engineering and regenerative medicine. In this study, we focus our attention, for the first time, on the marine sponge Ianthella labyrinthus Bergquist & Kelly-Borges, 1995 (Demospongiae: Verongida: Ianthellidae) as a novel potential source of naturally prestructured bandage-like 3D scaffolds which can be isolated simultaneously with biologically active bromotyrosines. Specifically, translucent and elastic flat chitinous scaffolds have been obtained after bromotyrosine extraction and chemical treatments of the sponge skeleton with alternate alkaline and acidic solutions. For the first time, cardiomyocytes differentiated from human induced pluripotent stem cells (iPSC-CMs) have been used to test the suitability of I. labyrinthus chitinous skeleton as ready-to-use scaffold for their cell culture. Results reveal a comparable attachment and growth on isolated chitin-skeleton, compared to scaffolds coated with extracellular matrix mimetic Geltrex®. Thus, the natural, unmodified I. labyrinthus cleaned sponge skeleton can be used to culture iPSC-CMs and 3D tissue engineering. In addition, I. labyrinthus chitin-based scaffolds demonstrate strong and efficient capability to absorb blood deep into the microtubes due to their excellent capillary effect. These findings are suggestive of the future development of new sponge chitin-based absorbable hemostats as alternatives to already well recognized cellulose-based fabrics. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    A self-adhesive elastomericwound scaffold for sensitive adhesion to tissue
    (Basel : MDPI, 2019) Boyadzhieva, Silviya; Sorg, Katharina; Danner, Martin; Hensel, René; Fischer, Sarah C.L.; Schick, Bernhard; Wenzel, Gentiana; Arzt, Eduard; Kruttwig, Klaus
    Pressure sensitive adhesives based on silicone materials are used particularly for skin adhesion, e.g., the fixation of electrocardiogram (ECG) electrodes or wound dressings. However, adhesion to sensitive tissue structures is not sufficiently addressed due to the risk of damage or rupture. We propose an approach in which a poly-(dimethylsiloxane) (PDMS)-based soft skin adhesive (SSA) acts as cellular scaffold for wound healing. Due to the intrinsically low surface free energy of silicone elastomers, functionalization strategies are needed to promote the attachment and spreading of eukaryotic cells. In the present work, the effect of physical adsorption of three different proteins on the adhesive properties of the soft skin adhesive was investigated. Fibronectin adsorption slightly affects adhesion but significantly improves the cellular interaction of L929 murine fibroblasts with the polymeric surface. Composite films were successfully attached to explanted tympanic membranes. This demonstrates the potential of protein functionalized SSA to act as an adhesive scaffold in delicate biomedical applications.