Search Results

Now showing 1 - 5 of 5
  • Item
    Nanoscale Mapping of the 3D Strain Tensor in a Germanium Quantum Well Hosting a Functional Spin Qubit Device
    (Washington, DC : Soc., 2023) Corley-Wiciak, Cedric; Richter, Carsten; Zoellner, Marvin H.; Zaitsev, Ignatii; Manganelli, Costanza L.; Zatterin, Edoardo; Schülli, Tobias U.; Corley-Wiciak, Agnieszka A.; Katzer, Jens; Reichmann, Felix; Klesse, Wolfgang M.; Hendrickx, Nico W.; Sammak, Amir; Veldhorst, Menno; Scappucci, Giordano; Virgilio, Michele; Capellini, Giovanni
    A strained Ge quantum well, grown on a SiGe/Si virtual substrate and hosting two electrostatically defined hole spin qubits, is nondestructively investigated by synchrotron-based scanning X-ray diffraction microscopy to determine all its Bravais lattice parameters. This allows rendering the three-dimensional spatial dependence of the six strain tensor components with a lateral resolution of approximately 50 nm. Two different spatial scales governing the strain field fluctuations in proximity of the qubits are observed at <100 nm and >1 μm, respectively. The short-ranged fluctuations have a typical bandwidth of 2 × 10-4 and can be quantitatively linked to the compressive stressing action of the metal electrodes defining the qubits. By finite element mechanical simulations, it is estimated that this strain fluctuation is increased up to 6 × 10-4 at cryogenic temperature. The longer-ranged fluctuations are of the 10-3 order and are associated with misfit dislocations in the plastically relaxed virtual substrate. From this, energy variations of the light and heavy-hole energy maxima of the order of several 100 μeV and 1 meV are calculated for electrodes and dislocations, respectively. These insights over material-related inhomogeneities may feed into further modeling for optimization and design of large-scale quantum processors manufactured using the mainstream Si-based microelectronics technology.
  • Item
    TSFZ Growth of Eu-Substituted Large-Size LSCO Crystals
    (Basel : MDPI, 2022) Voloshyna, Olesia; Romaka, Vitaliy V.; Karmakar, Koushik ;Seiro, Silvia; Maljuk, Andrey; Büchner, Bernd
    The travelling solvent floating zone (TSFZ) growth of Eu-substituted LSCO (La1.81−xEuxSr0.19CuO4, with nominal x = 0 ÷ 0.4) single crystals was systematically explored for the first time. The substitution of La with Eu considerably decreased the decomposition temperature. Optimal growth parameters were found to be: oxygen pressure 9.0–9.5 bars; Eu-free CuO-poor solvent (66 mol% CuO) with a molar ratio of La2O3:SrCO3:CuO = 4:4.5:16.5 and growth rate 0.6 mm/hour. The obtained single crystals were characterized with optical polarized microscopy, X-ray diffraction and energy-dispersive X-ray spectroscopy analysis. The solubility of Eu in LSCO appeared to be limited to x~0.36–0.38 under the used conditions. The substitution of La3+ with smaller Eu3+ ions led to a structural transition from tetragonal with space group I4/mmm for La1.81Sr0.19CuO4 (x = 0) to orthorhombic with space group Fmmm for La1.81−xSr0.19EuxCuO4 (x = 0.2, 0.3, 0.4), and to a substantial shrinking of the c-axis from 13.2446 Å (x = 0.0) to 13.1257 Å (x = 0.4). Such structural changes were accompanied by a dramatic decrease in the superconducting critical temperature, Tc, from 29.5 K for x = 0 to 13.8 K for 0.2. For x ≥ 0.3, no superconductivity was detected down to 4 K.
  • Item
    PAH/PAH(CF3)n Donor/Acceptor Charge-Transfer Complexes in Solution and in Solid-State Co-Crystals
    (Weinheim : Wiley-VCH, 2019) Castro, Karlee P.; Bukovsky, Eric V.; Kuvychko, Igor V.; DeWeerd, Nicholas J.; Chen, Yu-Sheng; Deng, Shihu H.M.; Wang, Xue-Bin; Popov, Alexey A.; Strauss, Steven H.; Boltalina, Olga V.
    A solution, solid-state, and computational study is reported of polycyclic aromatic hydrocarbon PAH/PAH(CF3)n donor/acceptor (D/A) charge-transfer complexes that involve six PAH(CF3)n acceptors with known gas-phase electron affinities that range from 2.11(2) to 2.805(15) eV and four PAH donors, including seven CT co-crystal X-ray structures that exhibit hexagonal arrays of mixed π-stacks with 1/1, 1/2, or 2/1 D/A stoichiometries (PAH=anthracene, azulene, coronene, perylene, pyrene, triphenylene; n=5, 6). These are the first D/A CT complexes with PAH(CF3)n acceptors to be studied in detail. The nine D/A combinations were chosen to allow several structural and electronic comparisons to be made, providing new insights about controlling D/A interactions and the structures of CT co-crystals. The comparisons include, among others, CT complexes of the same PAH(CF3)n acceptor with four PAH donors and CT complexes of the same donor with four PAH(CF3)n acceptors. All nine CT complexes exhibit charge-transfer bands in solution with λmax between 467 and 600 nm. A plot of E(λmax) versus [IE(donor)−EA(acceptor)] for the nine CT complexes studied is linear with a slope of 0.72±0.03 eV eV−1. This plot is the first of its kind for CT complexes with structurally related donors and acceptors for which precise experimental gas-phase IEs and EAs are known. It demonstrates that conclusions based on the common assumption that the slope of a CT E(λmax) versus [IE−EA] plot is unity may be incorrect in at least some cases and should be reconsidered. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Sample chamber for synchrotron based in-situ X-ray diffraction experiments under electric fields and temperatures between 100 K and 1250 K
    (Chester : IUCr, 2021) Nentwich, Melanie; Weigel, Tina; Richter, Carsten; Stöcker, Hartmut; Mehner, Erik; Jachalke, Sven; Novikov, Dmitri V.; Zschornak, Matthias; Meyer, Dirk C.
    Many scientific questions require X-ray experiments conducted at varying temperatures, sometimes combined with the application of electric fields. Here, a customized sample chamber developed for beamlines P23 and P24 of PETRA III at DESY to suit these demands is presented. The chamber body consists mainly of standard vacuum parts housing the heater/cooler assembly supplying a temperature range of 100 K to 1250 K and an xyz manipulator holding an electric contact needle for electric measurements at both high voltage and low current. The chamber is closed by an exchangeable hemispherical dome offering all degrees of freedom for single-crystal experiments within one hemisphere of solid angle. The currently available dome materials (PC, PS, PEEK polymers) differ in their absorption and scattering characteristics, with PEEK providing the best overall performance. The article further describes heating and cooling capabilities, electric characteristics, and plans for future upgrades of the chamber. Examples of applications are discussed.
  • Item
    Gallium and Indium Alkoxides with Hydride, Cyclopentadienediide and Copper(I) tert-Butoxide as further Components
    (Weinheim : Wiley-VCH, 2019) Veith, M.; Summa, D.; Annel, U.; Huch, V.
    Gallium hydride stabilized by the base quinonuclidine reacts with acetone under addition of the Ga-H function to the carbon–oxygen double bond yielding (HGa)5(OiPr)8O (1) as isolable compound. (HGa)5(OiPr)8O may be formally split in to four entities of HGa(OiPr)2 and one entity HGaO. The inner atomic skeleton of 1 is a novel Ga5O9 heterocluster with gallium atoms occupying the corners of a distorted trigonal bi-pyramid, an oxygen atom in the center and the remaining alcoholate oxygen atoms bridging eight of the nine edges of the bi-pyramid (X-ray diffraction analysis). Potassium indium alkoxide KIn(OtBu)4 has been used to synthesize several new compounds like In4(OtBu)8(C5H4)2 (2), (py)2CuIn(OtBu)4 (3), and [CuIn(OtBu)4]2 (4) by reaction with TiCl2cp2 (2) and CuCl (3, 4). All compounds were characterized by spectroscopic means and by X-ray structure analyses revealing novel polycyclic structures. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.