Search Results

Now showing 1 - 3 of 3
  • Item
    Elucidating the chemistry behind the reduction of graphene oxide using a green approach with polydopamine
    (Basel : MDPI, 2019) Silva, Cláudia; Simon, Frank; Friedel, Peter; Pötschke, Petra; Zimmerer, Cordelia
    A new approach using X-ray photoelectron spectroscopy (XPS) was employed to give insight into the reduction of graphene oxide (GO) using a green approach with polydopamine (PDA). In this approach, the number of carbon atoms bonded to OH and to nitrogen in PDA is considered and compared to the total intensity of the signal resulting from OH groups in polydopamine-reduced graphene oxide (PDA-GO) to show the reduction. For this purpose, GO and PDA-GO with different times of reduction were prepared and characterized by Raman Spectroscopy and XPS. The PDA layer was removed to prepare reduced graphene oxide (RGO) and the effect of all chemical treatments on the thermal and electrical properties of the materials was studied. The results show that the complete reduction of the OH groups in GO occurred after 180 min of reaction. It was also concluded that Raman spectroscopy is not well suited to determine if the reduction and restoration of the sp2 structure occurred. Moreover, a significant change in the thermal stability was not observed with the chemical treatments. Finally, the electrical powder conductivity decreased after reduction with PDA, increasing again after its removal. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    X-ray Ptychographic Imaging and Spectroscopic Studies of Plasma-Treated Plastic Films
    (Basel : MDPI, 2022) Ravandeh, Mehdi; Mehrjoo, Masoud; Kharitonov, Konstantin; Schäfer, Jan; Quade, Antje; Honnorat, Bruno; Ruiz-Lopez, Mabel; Keitel, Barbara; Kreis, Svea; Pan, Rui; Gang, Seung-gi; Wende, Kristian; Plönjes, Elke
    Polyethylene terephthalate (PET) is a thermoplastic polyester with numerous applications in industry. However, it requires surface modification on an industrial scale for printing and coating processes and plasma treatment is one of the most commonly used techniques to increase the hydrophilicity of the PET films. Systematic improvement of the surface modification by adaption of the plasma process can be aided by a comprehensive understanding of the surface morphology and chemistry. However, imaging large surface areas (tens of microns) with a resolution that allows understanding the surface quality and modification is challenging. As a proof-of-principle, plasma-treated PET films were used to demonstrate the capabilities of X-ray ptychography, currently under development at the soft X-ray free-electron laser FLASH at DESY, for imaging macroscopic samples. In combination with scanning electron microscopy (SEM), this new technique was used to study the effects of different plasma treatment processes on PET plastic films. The studies on the surface morphology were complemented by investigations of the surface chemistry using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). While both imaging techniques consistently showed an increase in roughness and change in morphology of the PET films after plasma treatment, X-ray ptychography can provide additional information on the three-dimensional morphology of the surface. At the same time, the chemical analysis shows an increase in the oxygen content and polarity of the surface without significant damage to the polymer, which is important for printing and coating processes.
  • Item
    Chemical in-depth analysis of (Ca/Sr)F2 core–shell like nanoparticles by X-ray photoelectron spectroscopy with tunable excitation energy
    (Chichester [u.a.] : Wiley, 2021) Müller, Anja; Krahl, Thoralf; Radnik, Jörg; Wagner, Andreas; Kreyenschulte, Carsten; Werner, Wolfgang S.M.; Ritter, Benjamin; Kemnitz, Erhard; Unger, Wolfgang E.S.
    The fluorolytic sol–gel synthesis is applied with the intention to obtain two different types of core–shell nanoparticles, namely, SrF2–CaF2 and CaF2–SrF2. In two separate fluorination steps for core and shell formation, the corresponding metal lactates are reacted with anhydrous HF in ethylene glycol. Scanning transmission electron microscopy (STEM) and dynamic light scattering (DLS) confirm the formation of particles with mean dimensions between 6.4 and 11.5 nm. The overall chemical composition of the particles during the different reaction steps is monitored by quantitative Al Kα excitation X-ray photoelectron spectroscopy (XPS). Here, the formation of stoichiometric metal fluorides (MF2) is confirmed, both for the core and the final core–shell particles. Furthermore, an in-depth analysis by synchrotron radiation XPS (SR-XPS) with tunable excitation energy is performed to confirm the core–shell character of the nanoparticles. Additionally, Ca2p/Sr3d XPS intensity ratio in-depth profiles are simulated using the software Simulation of Electron Spectra for Surface Analysis (SESSA). In principle, core–shell like particle morphologies are formed but without a sharp interface between calcium and strontium containing phases. Surprisingly, the in-depth chemical distribution of the two types of nanoparticles is equal within the error of the experiment. Both comprise a SrF2-rich core domain and CaF2-rich shell domain with an intermixing zone between them. Consequently, the internal morphology of the final nanoparticles seems to be independent from the synthesis chronology.