Search Results

Now showing 1 - 5 of 5
  • Item
    Relations between Structure, Activity and Stability in C3N4 Based Photocatalysts Used for Solar Hydrogen Production
    (Basel : MDPI, 2018-1-29) Sivasankaran, Ramesh P.; Rockstroh, Nils; Hollmann, Dirk; Kreyenschulte, Carsten R.; Agostini, Giovanni; Lund, Henrik; Acharjya, Amitava; Rabeah, Jabor; Bentrup, Ursula; Junge, Henrik; Thomas, Arne; Brückner, Angelika
    Solar hydrogen production from water could be a sustainable and environmentally friendly alternative to fossil energy carriers, yet so far photocatalysts active and stable enough for large-scale applications are not available, calling for advanced research efforts. In this work, H2 evolution rates of up to 1968 and 5188 μmol h−1 g−1 were obtained from aqueous solutions of triethanolamine (TEOA) and oxalic acid (OA), respectively, by irradiating composites of AgIn5S8 (AIS), mesoporous C3N4 (CN, surface area >150 m2/g) and ≤2 wt.% in-situ photodeposited Pt nanoparticles (NPs) with UV-vis (≥300 nm) and pure visible light (≥420 nm). Structural properties and electron transport in these materials were analyzed by XRD, STEM-HAADF, XPS, UV-vis-DRS, ATR-IR, photoluminescence and in situ-EPR spectroscopy. Initial H2 formation rates were highest for Pt/CN, yet with TEOA this catalyst deactivated by inclusion of Pt NPs in the matrix of CN (most pronounced at λ ≥ 300 nm) while it remained active with OA, since in this case Pt NPs were enriched on the outermost surface of CN. In Pt/AIS-CN catalysts, Pt NPs were preferentially deposited on the surface of the AIS phase which prevents them from inclusion in the CN phase but reduces simultaneously the initial H2 evolution rate. This suggests that AIS hinders transport of separated electrons from the CN conduction band to Pt NPs but retains the latter accessible by protons to produce H2.
  • Item
    Plasma polymerized allylamine-the unique cell-attractive nanolayer for dental implant materials
    (Basel : MDPI, 2019) Nebe, J. Barbara; Rebl, Henrike; Schlosser, Michael; Staehlke, Susanne; Gruening, Martina; Weltmann, Klaus-Dieter; Walschus, Uwe; Finke, Birgit
    Biomaterials should be bioactive in stimulating the surrounding tissue to accelerate the ingrowth of permanent implants. Chemical and topographical features of the biomaterial surface affect cell physiology at the interface. A frequently asked question is whether the chemistry or the topography dominates the cell-material interaction. Recently, we demonstrated that a plasma-chemical modification using allylamine as a precursor was able to boost not only cell attachment and cell migration, but also intracellular signaling in vital cells. This microwave plasma process generated a homogenous nanolayer with randomly distributed, positively charged amino groups. In contrast, the surface of the human osteoblast is negatively charged at −15 mV due to its hyaluronan coat. As a consequence, we assumed that positive charges at the material surface—provoking electrostatic interaction forces—are attractive for the first cell encounter. This plasma-chemical nanocoating can be used for several biomaterials in orthopedic and dental implantology like titanium, titanium alloys, calcium phosphate scaffolds, and polylactide fiber meshes produced by electrospinning. In this regard, we wanted to ascertain whether plasma polymerized allylamine (PPAAm) is also suitable for increasing the attractiveness of a ceramic surface for dental implants using Yttria-stabilized tetragonal zirconia.
  • Item
    Simultaneous Treatment of Both Sides of the Polymer with a Conical-Shaped Atmospheric Pressure Plasma Jet
    (Basel : MDPI, 2023) Kodaira, Felipe Vicente de Paula; Leal, Bruno Henrique Silva; Tavares, Thayna Fernandes; Quade, Antje; Hein, Luis Rogerio de Oliveira; Chiappim, William; Kostov, Konstantin Georgiev
    A conical-shaped atmospheric pressure plasma jet (CS-APPJ) was developed to overcome a standard limitation of APPJs, which is their small treatment area. The CS-APPJs increase the treatment area but use the same gas flow. In the present work, polypropylene samples were treated by CS-APPJ and characterized by scanning electron microscope (SEM), the contact angle, Fourier-transformed infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). It was observed that the treatment co-occurs on the face directly in contact with the plasma and on the opposite face (OF) of the samples, i.e., no contact. However, the treatment changed the chemical composition on each side; the OF is rougher than the direct contact face (DCF), probably due to the oxygen groups in excess at the DCF and nitrogen in quantity at the OF. Although simultaneous treatment of both sides of the sample occurs for most atmospheric plasma treatments, this phenomenon is not explored in the literature.
  • Item
    Simultaneous Treatment of Both Sides of the Polymer with a Conical-Shaped Atmospheric Pressure Plasma Jet
    (Basel : MDPI, 2023) Kodaira, Felipe Vicente de Paula; Leal, Bruno Henrique Silva; Tavares, Thayna Fernandes; Quade, Antje; Hein, Luis Rogerio de Oliveira; Chiappim, William; Kostov, Konstantin Georgiev
    A conical-shaped atmospheric pressure plasma jet (CS-APPJ) was developed to overcome a standard limitation of APPJs, which is their small treatment area. The CS-APPJs increase the treatment area but use the same gas flow. In the present work, polypropylene samples were treated by CS-APPJ and characterized by scanning electron microscope (SEM), the contact angle, Fourier-transformed infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). It was observed that the treatment co-occurs on the face directly in contact with the plasma and on the opposite face (OF) of the samples, i.e., no contact. However, the treatment changed the chemical composition on each side; the OF is rougher than the direct contact face (DCF), probably due to the oxygen groups in excess at the DCF and nitrogen in quantity at the OF. Although simultaneous treatment of both sides of the sample occurs for most atmospheric plasma treatments, this phenomenon is not explored in the literature.
  • Item
    XPS chemical state analysis of sputter depth profiling measurements for annealed TiAl-SiO2 and TiAl-W layer stacks
    (Chichester [u.a.] : Wiley, 2020) Oswald, Steffen; Lattner, Eric; Seifert, Marietta
    For the application of surface acoustic wave sensors at high temperatures, both a high-temperature stable piezoelectric substrate and a suitable metallization for the electrodes are needed. Our current attempt is to use TiAl thin films as metallization because this material is also known to be high temperature stable. In this study, Ti/Al multilayers and Ti-Al alloy layers were prepared in combination with an SiO2 cover layer or a W barrier layer at the interface to the substrate (thermally oxidized Si or Ca3TaGa3Si2O14) as an oxidation protection. To form the high-temperature stable γ-TiAl phase and to test the thermal stability of the layer systems, thermal treatments were done in vacuum at several temperatures. We used X-ray photoelectron spectroscopy (XPS) sputter depth-profiling to investigate the film composition and oxidation behavior. In this paper, we demonstrate how the semiautomatic peak fitting can help to extract beside the elemental information also the chemical information from the measured depth profiles. © 2020 The Authors. Surface and Interface Analysis published by John Wiley & Sons Ltd