Search Results

Now showing 1 - 2 of 2
  • Item
    Towards a methanol economy based on homogeneous catalysis: methanol to H2 and CO2 to methanol
    (Cambridge : Soc., 2015) Alberico, E.; Nielsen, M.
    The possibility to implement both the exhaustive dehydrogenation of aqueous methanol to hydrogen and CO2 and the reverse reaction, the hydrogenation of CO2 to methanol and water, may pave the way to a methanol based economy as part of a promising renewable energy system. Recently, homogeneous catalytic systems have been reported which are able to promote either one or the other of the two reactions under mild conditions. Here, we review and discuss these developments.
  • Item
    Plasma-based VAD process for multiply doped glass powders and high-performance fiber preforms with outstanding homogeneity
    (Hoboken, NJ : Wiley Interscience, 2020) Trautvetter, Tom; Schäfer, Jan; Benzine, Omar; Methling, Ralf; Baierl, Hardy; Reichel, Volker; Dellith, Jan; Köpp, Daniel; Hempel, Frank; Stankov, Marjan; Baeva, Margarita; Foest, Rüdiger; Wondraczek, Lothar; Wondraczek, Katrin; Bartelt, Hartmut
    An innovative approach using the vapor axial deposition (VAD), for the preparation of silica-based high-power fiber laser preforms, is described in this study. The VAD uses a plasma deposition system operating at atmospheric pressure, fed by a single, chemically adapted solution containing precursors of laser-active dopants (e.g., Yb2O3), glass-modifier species (e.g., Al2O3), and the silica matrix. The approach enables simultaneous doping with multiple optically active species and overcomes some of the current technological limitations encountered with well-established fiber preform technologies in terms of dopant distribution, doping levels, and achievable active core diameter. The deposition of co-doped silica with outstanding homogeneity is proven by Raman spectroscopy and electron probe microanalysis. Yb2O3 concentrations are realized up to 0.3 mol% in SiO2, with simultaneous doping of 3 mol% of Al2O3.