Search Results

Now showing 1 - 2 of 2
  • Item
    Proton-Gated Ring-Closure of a Negative Photochromic Azulene- Based Diarylethene
    (Weinheim : Wiley-VCH, 2020) Hou, Ian Cheng-Yi; Berger, Fabian; Narita, Akimitsu; Müllen, Klaus; Hecht, Stefan
    Proton-responsive photochromic molecules are attractive for their ability to react on non-invasive rapid optical stimuli and the importance of protonation/deprotonation processes in various fields. Conventionally, their acidic/basic sites are on hetero-atoms, which are orthogonal to the photo-active π-center. Here, we incorporate azulene, an acid-sensitive pure hydrocarbon, into the skeleton of a diarylethene-type photoswitch. The latter exhibits a novel proton-gated negative photochromic ring-closure and its optical response upon protonation in both open and closed forms is much more pronounced than those of diarylethene photoswitches with hetero-atom based acidic/basic moieties. The unique behavior of the new photoswitch can be attributed to direct protonation on its π-system, supported by 1H NMR and theoretical calculations. Our results demonstrate the great potential of integrating non-alternant hydrocarbons into photochromic systems for the development of multi-responsive molecular switches. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Helical Nanographenes Containing an Azulene Unit : Synthesis, Crystal Structures, and Properties
    (Wiley-VCH Verlag, 2019) Ma, Ji; Fu, Yubin; Dmitrieva, Evgenia; Liu, Fupin; Komber, Hartmut; Hennersdorf, Felix; Popov, Alexey A.; Weigand, Jan J.; Liu, Junzhi; Feng, Xinliang
    Three unprecedented helical nanographenes (1, 2, and 3) containing an azulene unit are synthesized. The resultant helical structures are unambiguously confirmed by X-ray crystallographic analysis. The embedded azulene unit in 2 possesses a record-high twisting degree (16.1°) as a result of the contiguous steric repulsion at the helical inner rim. Structural analysis in combination with theoretical calculations reveals that these helical nanographenes manifest a global aromatic structure, while the inner azulene unit exhibits weak antiaromatic character. Furthermore, UV/Vis-spectral measurements reveal that superhelicenes 2 and 3 possess narrow energy gaps (2: 1.88 eV; 3: 2.03 eV), as corroborated by cyclic voltammetry and supported by density functional theory (DFT) calculations. The stable oxidized and reduced states of 2 and 3 are characterized by in-situ EPR/Vis–NIR spectroelectrochemistry. Our study provides a novel synthetic strategy for helical nanographenes containing azulene units as well as their associated structures and physical properties. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.