Search Results

Now showing 1 - 3 of 3
  • Item
    Towards a methanol economy based on homogeneous catalysis: methanol to H2 and CO2 to methanol
    (Cambridge : Soc., 2015) Alberico, E.; Nielsen, M.
    The possibility to implement both the exhaustive dehydrogenation of aqueous methanol to hydrogen and CO2 and the reverse reaction, the hydrogenation of CO2 to methanol and water, may pave the way to a methanol based economy as part of a promising renewable energy system. Recently, homogeneous catalytic systems have been reported which are able to promote either one or the other of the two reactions under mild conditions. Here, we review and discuss these developments.
  • Item
    Carbon Monoxide Coupling Reactions: A New Concept for the Formation of Hexahydroxybenzene
    (Weinheim : Wiley-VCH, 2020) Rosenthal, Uwe
    For linear and cyclic coupling reactions of CO, among other products, the formation of the hexapotassium salt of hexahydroxybenzene is of particular interesting. The interaction of metallic potassium and CO offers, via the assumed K[OC≡CO]K as the result of several carbon monoxide coupling reactions, the formation of C6(OK)6 among other products. To date, only speculations exist about the reaction pathway for these products, which were first described by Liebig in 1834. A novel concept is suggested here, which consists of the single steps (i) reductive coupling of CO, (ii) formation of dihetero-metallacyclopentynes (cis-2,5-diheterobutatriene as formal ethylenedione O=C=C=O complexes), (iii) formation of its dinuclear 1-metalla-2,5-dioxo-cyclopentyne complexes by external coordination of the triple bond, (iv) insertion of CO into the M−C bond of the formed metallacyclopropene, and (v) the reductive elimination of C6(OK)6. The novel aspect of this concept is the formation of dihetero-metallacyclopentynes (in analogy to the well characterized all-C-metallacyclopentynes), which have not been considered in the mechanism of reductive CO coupling reactions. It is expected that the presence of transition-metal impurities would promote the reaction. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Steering carbon dioxide reduction toward C–C coupling using copper electrodes modified with porous molecular films
    ([London] : Nature Publishing Group UK, 2023) Zhao, Siqi; Christensen, Oliver; Sun, Zhaozong; Liang, Hongqing; Bagger, Alexander; Torbensen, Kristian; Nazari, Pegah; Lauritsen, Jeppe Vang; Pedersen, Steen Uttrup; Rossmeisl, Jan; Daasbjerg, Kim
    Copper offers unique capability as catalyst for multicarbon compounds production in the electrochemical carbon dioxide reduction reaction. In lieu of conventional catalysis alloying with other elements, copper can be modified with organic molecules to regulate product distribution. Here, we systematically study to which extent the carbon dioxide reduction is affected by film thickness and porosity. On a polycrystalline copper electrode, immobilization of porous bipyridine-based films of varying thicknesses is shown to result in almost an order of magnitude enhancement of the intrinsic current density pertaining to ethylene formation while multicarbon products selectivity increases from 9.7 to 61.9%. In contrast, the total current density remains mostly unaffected by the modification once it is normalized with respect to the electrochemical active surface area. Supported by a microkinetic model, we propose that porous and thick films increase both local carbon monoxide partial pressure and the carbon monoxide surface coverage by retaining in situ generated carbon monoxide. This reroutes the reaction pathway toward multicarbon products by enhancing carbon–carbon coupling. Our study highlights the significance of customizing the molecular film structure to improve the selectivity of copper catalysts for carbon dioxide reduction reaction.