Search Results

Now showing 1 - 2 of 2
  • Item
    Highly selective visible light-induced Ti–O bond splitting in an ansa-titanocene dihydroxido complex
    (Cambridge : Soc., 2015) Godemann, Christian; Dura, Laura; Hollmann, Dirk; Grabow, Kathleen; Bentrup, Ursula; Jiao, Haijun; Schulz, Axel; Brückner, Angelika; Beweries, Torsten
    Irradiation of a substituted ansa-titanocene(IV) dihydroxido complex with visible light induces Ti–O bond dissociation. In contrast to previous studies on structurally similar unbridged complexes, no side reactions are observed and formation of the Ti(III) species is highly selective. The formation of OH radicals was proved using a biradicaloid species.
  • Item
    Does the energy transfer from Ar(1s) atoms to N2 lead to dissociation?
    (Hoboken, NJ : Wiley Interscience, 2020) Klages, Claus‐Peter; Martinovs, Andris; Bröcker, Lars; Loffhagen, Detlef
    Dielectric-barrier discharges (DBDs) in Ar–N2 mixtures, with N2 fractions in 0.1–1% range, would be attractive alternatives to DBDs in pure N2 if energy-transfer reactions between Ar(1s) atoms and N2 molecules were an efficient source of N atoms. Attempts to functionalize polyolefins in flowing postdischarges fed by such DBDs, as well as the search for the First Positive System in the emission spectrum, however, failed. Evidently, the energy-transfer reactions do not produce N atoms. For Ar(1s3) and Ar(1s5) metastable states, this fact has already been reported in the literature. For Ar(1s2) and Ar(1s4) resonant states, a quantitative argument is derived in this paper: energy transfer from Ar(1s) atoms to N2 molecules is not an efficient source of N atoms.