Search Results

Now showing 1 - 7 of 7
  • Item
    Wet-Spun PEDOT/CNT Composite Hollow Fibers as Flexible Electrodes for H2O2 Production
    (Weinheim : Wiley-VCH, 2021) Cui, Qing; Bell, Daniel Josef; Wang, Siqi; Mohseni, Mojtaba; Felder, Daniel; Lölsberg, Jonas; Wessling, Matthias
    The electrochemical synthesis of hydrogen peroxide (H2O2) using the oxygen reduction reaction (ORR) requires highly catalytic active, selective, and stable electrode materials to realize a green and efficient process. The present publication shows for the first time the application of a facile one-step bottom-up wet-spinning approach for the continuous fabrication of stable and flexible tubular poly(3,4-ethylene dioxythiophene) (PEDOT : PSS) and PEDOT : PSS/carbon nanotube (CNT) hollow fibers. Additionally, electrochemical experiments reveal the catalytic activity of acid-treated PEDOT : PSS and its composites in the ORR forming hydrogen peroxide for the first time. Under optimized conditions, the composite electrodes with 40 wt % CNT loading could achieve a high production rate of 0.01 mg/min/cm2 and a current efficiency of up to 54 %. In addition to the high production rate, the composite hollow fiber has proven its long-term stability with 95 % current retention after 20 h of hydrogen peroxide production. © 2021 The Authors. ChemElectroChem published by Wiley-VCH GmbH
  • Item
    Titanium-Based Static Mixer Electrodes to Improve the Current Density of Slurry Electrodes
    (Weinheim : Wiley-VCH, 2023) Percin, Korcan; Hereijgers, Jonas; Mulandi, Nicolas; Breugelmans, Tom; Wessling, Matthias
    Complex geometries for electrodes are a great challenge in electrochemical applications. Slurry electrodes have been one example, which use complex flow distributors to improve the charge transfer between the current collector and the slurry particles. Here we use titanium-based flow distributors produced by indirect 3D-printing to improve further the electron transfer from highly conductive flow distributors to the slurry particles for a vanadium redox flow application. The titanium static mixers are directly coated with graphite to increase the activity for vanadium redox reactions. Increasing layers of graphite have shown an optimum for the positive and negative electrolytes. The application of heat treatment on the electrodes improves the anodic and cathodic current peaks drastically. Testing the highly conductive static mixers in a self-made redox flow cell results in 110 mA cm−2 discharge polarization.
  • Item
    Rings and Chains: Synthesis and Characterization of Polyferrocenylmethylene
    (Weinheim : Wiley-VCH, 2021) Winter, Tamara; Haider, Wasim; Schießer, Alexander; Presser, Volker; Gallei, Markus; Schäfer, André
    The synthesis and characterization of polyferrocenylmethylene (PFM) starting from dilithium 2,2-bis(cyclopentadienide)propane and a Me2C[1]magnesocenophane is reported. Molecular weights of up to Mw = 11 700 g mol–1 featuring a dispersity, Ð, of 1.40 can be achieved. The material is studied by different methods comprising nuclear magnetic resonance (NMR) spectroscopy, matrix-assisted laser desorption/ionization time of flight (MALDI-ToF) mass spectrometry, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) measurements elucidating the molecular structure and thermal properties of these novel polymers. Moreover, cyclic voltammetry (CV) reveals quasi-reversible oxidation and reduction behavior and communication between the iron centers. Also, the crystal structure of a related cyclic hexamer is presented
  • Item
    Insight into the Impact of Oxidative Stress on the Barrier Properties of Lipid Bilayer Models
    (Basel : Molecular Diversity Preservation International (MDPI), 2022) Nasri, Zahra; Ahmadi, Mohsen; Striesow, Johanna; Ravandeh, Mehdi; von Woedtke, Thomas; Wende, Kristian
    As a new field of oxidative stress-based therapy, cold physical plasma is a promising tool for several biomedical applications due to its potential to create a broad diversity of reactive oxygen and nitrogen species (RONS). Although proposed, the impact of plasma-derived RONS on the cell membrane lipids and properties is not fully understood. For this purpose, the changes in the lipid bilayer functionality under oxidative stress generated by an argon plasma jet (kINPen) were investigated by electrochemical techniques. In addition, liquid chromatography-tandem mass spectrometry was employed to analyze the plasma-induced modifications on the model lipids. Various asymmetric bilayers mimicking the structure and properties of the erythrocyte cell membrane were transferred onto a gold electrode surface by Langmuir-Blodgett/Langmuir-Schaefer deposition techniques. A strong impact of cholesterol on membrane permeabilization by plasma-derived species was revealed. Moreover, the maintenance of the barrier properties is influenced by the chemical composition of the head group. Mainly the head group size and its hydrogen bonding capacities are relevant, and phosphatidylcholines are significantly more susceptible than phosphatidylserines and other lipid classes, underlining the high relevance of this lipid class in membrane dynamics and cell physiology.
  • Item
    The First Products of Aniline Oxidation – SERS Spectroelectrochemistry
    (Weinheim : Wiley-VCH, 2019) Morávková, Zuzana; Dmitrieva, Evgenia
    There are different opinions on the first products of aniline oxidation throughout the scientific community. While electrochemists basically accept only linear oligomers with repeating units joint in para positions, chemists have proposed formation of various branched and polycyclic oligomers. It was also suggested that one of these structures, N-phenyl-phenazinium cation, is responsible for the adherence of polyaniline films to substrates. In this work, a surface enhanced Raman spectroscopic and spectroelectrochemical analysis of the species adsorbed onto gold surface in aniline-containing solution at pH 1 and 5 is presented. The influence of the pH value on the oligomer structure is declared. The results are discussed in the context of linear and branched/phenazine-like aniline oligomers. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Get more out of your data: A new approach to agglomeration and aggregation studies using nanoparticle impact experiments
    (Hoboken, NJ : Wiley, 2013) Ellison, Joanna; Tschulik, Kristina; Stuart, Emma J.E.; Jurkschat, Kerstin; Omanovi´c, Dario; Uhlemann, Margitta; Crossley, Alison; Compton, Richard G.
    Anodic particle coloumetry is used to size silver nanoparticles impacting a carbon microelectrode in a potassium chloride/citrate solution. Besides their size, their agglomeration state in solution is also investigated solely by electrochemical means and subsequent data analysis. Validation of this new approach to nanoparticle agglomeration studies is performed by comparison with the results of a commercially available nanoparticle tracking analysis system, which shows excellent agreement. Moreover, it is demonstrated that the electrochemical technique has the advantage of directly yielding the number of atoms per impacting nanoparticle irrespective of its shape. This is not true for the optical nanoparticle tracking system, which requires a correction for the nonspherical shape of agglomerated nanoparticles to derive reasonable information on the agglomeration state.
  • Item
    Graphitization as a universal tool to tailor the potential-dependent capacitance of carbon supercapacitors
    (Hoboken, NJ : Wiley, 2014) Weingarth, Daniel; Zeiger, Marco; Jäckel, Nicolas; Aslan, Mesut; Feng, Guang; Presser, Volker
    Most efforts to improve the energy density of supercapacitors are currently dedicated to optimized porosity or hybrid devices employing pseudocapacitive elements. Little attention has been given to the effects of the low charge carrier density of carbon on the total material capacitance. To study the effect of graphitization on the differential capacitance, carbon onion (also known as onion-like carbon) supercapacitors are chosen. The increase in density of states (DOS) related to the low density of charge carriers in carbon materials is an important effect that leads to a substantial increase in capacitance as the electrode potential is increased. Using carbon onions as a model, it is shown that this phenomenon cannot be related only to geometric aspects but must be the result of varying graphitization. This provides a new tool to significantly improve carbon supercapacitor performance, in addition to having significant consequences for the modeling community where carbons usually are approximated to be ideal metallic conductors. Data on the structure, composition, and phase content of carbon onions are presented and the correlation between electrochemical performance and electrical resistance and graphitization is shown. Highly graphitic carbons show a stronger degree of electrochemical doping, making them very attractive for enhancing the capacitance.