Search Results

Now showing 1 - 2 of 2
  • Item
    Structural and Electric Properties of Epitaxial Na0.5Bi0.5TiO3-Based Thin Films
    (Basel : MDPI, 2021) Magalhaes, Bruno; Engelhardt, Stefan; Molin, Christian; Gebhardt, Sylvia E.; Nielsch, Kornelius; Hühne, Ruben
    Substantial efforts are dedicated worldwide to use lead-free materials for environmentally friendly processes in electrocaloric cooling. Whereas investigations on bulk materials showed that Na0.5Bi0.5TiO3 (NBT)-based compounds might be suitable for such applications, our aim is to clarify the feasibility of epitaxial NBT-based thin films for more detailed investigations on the correlation between the composition, microstructure, and functional properties. Therefore, NBT-based thin films were grown by pulsed laser deposition on different single crystalline substrates using a thin epitaxial La0.5Sr0.5CoO3 layer as the bottom electrode for subsequent electric measurements. Structural characterization revealed an undisturbed epitaxial growth of NBT on lattice-matching substrates with a columnar microstructure, but high roughness and increasing grain size with larger film thickness. Dielectric measurements indicate a shift of the phase transition to lower temperatures compared to bulk samples as well as a reduced permittivity and increased losses at higher temperatures. Whereas polarization loops taken at −100 °C revealed a distinct ferroelectric behavior, room temperature data showed a significant resistive contribution in these measurements. Leakage current studies confirmed a non-negligible conductivity between the electrodes, thus preventing an indirect characterization of the electrocaloric properties of these films.
  • Item
    Phase Diagram of a Strained Ferroelectric Nanowire
    (Basel : MDPI, 2022) Pavlenko, Maksim A.; Di Rino, Franco; Boron, Leo; Kondovych, Svitlana; Sené, Anaïs; Tikhonov, Yuri A.; Razumnaya, Anna G.; Vinokur, Valerii M.; Sepliarsky, Marcelo; Lukyanchuk, Igor A.
    Ferroelectric materials manifest unique dielectric, ferroelastic, and piezoelectric properties. A targeted design of ferroelectrics at the nanoscale is not only of fundamental appeal but holds the highest potential for applications. Compared to two-dimensional nanostructures such as thin films and superlattices, one-dimensional ferroelectric nanowires are investigated to a much lesser extent. Here, we reveal a variety of the topological polarization states, particularly the vortex and helical chiral phases, in loaded ferroelectric nanowires, which enable us to complete the strain–temperature phase diagram of the one-dimensional ferroelectrics. These phases are of prime importance for optoelectronics and quantum communication technologies