Search Results

Now showing 1 - 2 of 2
  • Item
    Enhanced Concanavalin A Binding to Preorganized Mannose Nanoarrays in Glycodendrimersomes Revealed Multivalent Interactions
    (Weinheim : Wiley-VCH, 2021) Kostina, Nina Yu; Söder, Dominik; Haraszti, Tamás; Xiao, Qi; Rahimi, Khosrow; Partridge, Benjamin E.; Klein, Michael L.; Percec, Virgil; Rodriguez‐Emmenegger, Cesar
    The effect of the two-dimensional glycan display on glycan-lectin recognition remains poorly understood despite the importance of these interactions in a plethora of cellular processes, in (patho)physiology, as well as its potential for advanced therapeutics. Faced with this challenge we utilized glycodendrimersomes, a type of synthetic vesicles whose membrane mimics the surface of a cell and offers a means to probe the carbohydrate biological activity. These single-component vesicles were formed by the self-assembly of sequence-defined mannose-Janus dendrimers, which serve as surrogates for glycolipids. Using atomic force microscopy and molecular modeling we demonstrated that even mannose, a monosaccharide, was capable of organizing the sugar moieties into periodic nanoarrays without the need of the formation of liquid-ordered phases as assumed necessary for rafts. Kinetics studies of Concanavalin A binding revealed that those nanoarrays resulted in a new effective ligand yielding a ten-fold increase in the kinetic and thermodynamic constant of association. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
  • Item
    The more the merrier: effects of macromolecular crowding on the structure and dynamics of biological membranes
    (Oxford [u.a.] : Wiley-Blackwell, 2020) Löwe, Maryna; Kalacheva, Milara; Boersma, Arnold J.; Kedrov, Alexej
    Proteins are essential and abundant components of cellular membranes. Being densely packed within the limited surface area, proteins fulfil essential tasks for life, which include transport, signalling and maintenance of cellular homeostasis. The high protein density promotes nonspecific interactions, which affect the dynamics of the membrane-associated processes, but also contribute to higher levels of membrane organization. Here, we provide a comprehensive summary of the most recent findings of diverse effects resulting from high protein densities in both living membranes and reconstituted systems and display why the crowding phenomenon should be considered and assessed when studying cellular pathways. Biochemical, biophysical and computational studies reveal effects of crowding on the translational mobility of proteins and lipids, oligomerization and clustering of integral membrane proteins, and also folding and aggregation of proteins at the lipid membrane interface. The effects of crowding pervade to larger length scales, where interfacial and transmembrane crowding shapes the lipid membrane. Finally, we discuss the design and development of fluorescence-based sensors for macromolecular crowding and the perspectives to use those in application to cellular membranes and suggest some emerging topics in studying crowding at biological interfaces. © 2020 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies