Search Results

Now showing 1 - 2 of 2
  • Item
    Hydrophilic non-precious metal nitrogen-doped carbon electrocatalysts for enhanced efficiency in oxygen reduction reaction
    (Cambridge : Royal Society of Chemistry, 2015) Hao, Guang-Ping; Sahraie, Nastaran Ranjbar; Zhang, Qiang; Krause, Simon; Oschatz, Martin; Bachmatiuk, Alicja; Strasser, Peter; Kaskel, Stefan
    Exploring the role of surface hydrophilicity of non-precious metal N-doped carbon electrocatalysts in electrocatalysis is challenging. Herein we discover an ultra-hydrophilic non-precious carbon electrocatalyst, showing enhanced catalysis efficiency on both gravimetric and areal basis for oxygen reduction reaction due to a high dispersion of active centres.
  • Item
    Does the energy transfer from Ar(1s) atoms to N2 lead to dissociation?
    (Hoboken, NJ : Wiley Interscience, 2020) Klages, Claus‐Peter; Martinovs, Andris; Bröcker, Lars; Loffhagen, Detlef
    Dielectric-barrier discharges (DBDs) in Ar–N2 mixtures, with N2 fractions in 0.1–1% range, would be attractive alternatives to DBDs in pure N2 if energy-transfer reactions between Ar(1s) atoms and N2 molecules were an efficient source of N atoms. Attempts to functionalize polyolefins in flowing postdischarges fed by such DBDs, as well as the search for the First Positive System in the emission spectrum, however, failed. Evidently, the energy-transfer reactions do not produce N atoms. For Ar(1s3) and Ar(1s5) metastable states, this fact has already been reported in the literature. For Ar(1s2) and Ar(1s4) resonant states, a quantitative argument is derived in this paper: energy transfer from Ar(1s) atoms to N2 molecules is not an efficient source of N atoms.