3 results
Search Results
Now showing 1 - 3 of 3
- ItemEfficiency of plasma-processed air for biological decontamination of crop seeds on the premise of unimpaired seed germination(Hoboken, NJ : Wiley Interscience, 2021) Wannicke, Nicola; Wagner, Robert; Stachowiak, Joerg; Nishime, Thalita M.C.; Ehlbeck, Joerg; Weltmann, Klaus‐Dieter; Brust, HenrikeIn this study, the antimicrobial effect of plasma-processed air (PPA) generated by a microwave-induced nonthermal plasma was investigated for preharvest utilization using three crop species: Barley, rape, and lupine. Bacillus atrophaeus spores were chosen as a model, inoculated onto seeds, and subsequently treated with PPA at two different flow rates, different filling regimes, and gas exposure times. PPA treatment was efficient in reducing viable spores of B. atrophaeus, reaching sporicidal effects in all species at certain parameter combinations. Maximum germination of seeds was strongly reduced in barley and rape seeds at some parameter combination, whereas it had a modest effect on lupine seeds. Seed hydrophilicity was not altered. Overall, PPA investigated in this study proved suitable for preharvest applications.
- ItemPlasma technology-a novel solution for CO2 conversion?(London : Soc., 2017) Snoeckx, Ramses; Bogaerts, AnnemieCO2 conversion into value-added chemicals and fuels is considered as one of the great challenges of the 21st century. Due to the limitations of the traditional thermal approaches, several novel technologies are being developed. One promising approach in this field, which has received little attention to date, is plasma technology. Its advantages include mild operating conditions, easy upscaling, and gas activation by energetic electrons instead of heat. This allows thermodynamically difficult reactions, such as CO2 splitting and the dry reformation of methane, to occur with reasonable energy cost. In this review, after exploring the traditional thermal approaches, we have provided a brief overview of the fierce competition between various novel approaches in a quest to find the most effective and efficient CO2 conversion technology. This is needed to critically assess whether plasma technology can be successful in an already crowded arena. The following questions need to be answered in this regard: are there key advantages to using plasma technology over other novel approaches, and if so, what is the flip side to the use of this technology? Can plasma technology be successful on its own, or can synergies be achieved by combining it with other technologies? To answer these specific questions and to evaluate the potentials and limitations of plasma technology in general, this review presents the current state-of-the-art and a critical assessment of plasma-based CO2 conversion, as well as the future challenges for its practical implementation.
- ItemCharacterization of the chemical kinetics in an O2/HMDSO RF plasma for material processing(New York, NY : Hindawi, 2012) Barni, Ruggero; Zanini, Stefano; Riccardi, ClaudiaExperimental study of the plasma gas phase in low-pressure radiofrequency discharges of oxygen and hexamethyldisiloxane is presented. The plasma phase has been studied by means of optical emission spectroscopy. Mass spectroscopy of the neutral and of the charged species has been performed too, directly sampling the plasma gas phase, by a dedicated spectrometer. We also measured the ion energy distribution. We have studied the influence of the operating conditions on the plasma gas-phase composition which plays a primary role in the formation process of SiO2 films, which are known for their important applicative uses.