Search Results

Now showing 1 - 2 of 2
  • Item
    Enzymatic Catalysis at Nanoscale: Enzyme-Coated Nanoparticles as Colloidal Biocatalysts for Polymerization Reactions
    (Washington, DC : ACS Publications, 2017) Kreuzer, Lucas Philipp; Männel, Max Julius; Schubert, Jonas; Höller, Roland P. M.; Chanana, Munish
    Enzyme-catalyzed controlled radical polymerization represents a powerful approach for the polymerization of a wide variety of water-soluble monomers. However, in such an enzyme-based polymerization system, the macromolecular catalyst (i.e., enzyme) has to be separated from the polymer product. Here, we present a compelling approach for the separation of the two macromolecular species, by taking the catalyst out of the molecular domain and locating it in the colloidal domain, ensuring quasi-homogeneous catalysis as well as easy separation of precious biocatalysts. We report on gold nanoparticles coated with horseradish peroxidase that can catalyze the polymerization of various monomers (e.g., N-isopropylacrylamide), yielding thermoresponsive polymers. Strikingly, these biocatalyst-coated nanoparticles can be recovered completely and reused in more than three independent polymerization cycles, without significant loss of their catalytic activity.
  • Item
    Enantiomer-selective magnetization of conglomerates for quantitative chiral separation
    (Berlin : Springer Nature, 2019) Ye, X.; Cui, J.; Li, B.; Li, N.; Wang, R.; Yan, Z.; Tan, J.; Zhang, J.; Wan, X.
    Selective crystallization represents one of the most economical and convenient methods to provide large-scale optically pure chiral compounds. Although significant development has been achieved since Pasteur’s separation of sodium ammonium tartrate in 1848, this method is still fundamentally low efficient (low transformation ratio or high labor). Herein, we describe an enantiomer-selective-magnetization strategy for quantitatively separating the crystals of conglomerates by using a kind of magnetic nano-splitters. These nano-splitters would be selectively wrapped into the S-crystals, leading to the formation of the crystals with different physical properties from that of R-crystals. As a result of efficient separation under magnetic field, high purity chiral compounds (99.2 ee% for R-crystals, 95.0 ee% for S-crystals) can be obtained in a simple one-step crystallization process with a high separation yield (95.1%). Moreover, the nano-splitters show expandability and excellent recyclability. We foresee their great potential in developing chiral separation methods used on different scales. © 2019, The Author(s).