Search Results

Now showing 1 - 10 of 11
  • Item
    Climate change impact on regional floods in the Carpathian region
    (Amsterdam [u.a.] : Elsevier, 2019) Didovets, Iulii; Krysanova, Valentina; Bürger, Gerd; Snizhko, Sergiy; Balabukh, Vira; Bronstert, Axel
    Study region: Tisza and Prut catchments, originating on the slopes of the Carpathian mountains. Study focus: The study reported here investigates (i) climate change impacts on flood risk in the region, and (ii) uncertainty related to hydrological modelling, downscaling techniques and climate projections. The climate projections used in the study were derived from five GCMs, downscaled either dynamically with RCMs or with the statistical downscaling model XDS. The resulting climate change scenarios were applied to drive the eco-hydrological model SWIM, which was calibrated and validated for the catchments in advance using observed climate and hydrological data. The changes in the 30-year flood hazards and 98 and 95 percentiles of discharge were evaluated for the far future period (2071–2100) in comparison with the reference period (1981–2010). New hydrological insights for the region: The majority of model outputs under RCP 4.5 show a small to strong increase of the 30-year flood level in the Tisza ranging from 4.5% to 62%, and moderate increase in the Prut ranging from 11% to 22%. The impact results under RCP 8.5 are more uncertain with changes in both directions due to high uncertainties in GCM-RCM climate projections, downscaling methods and the low density of available climate stations. © 2019 The Authors
  • Item
    Revisiting economic burdens of malaria in the face of climate change: a conceptual analysis for Ethiopia
    (Bradford : Emerald, 2020) Yalew, Amsalu Woldie
    Purpose: Climate change affects the geographic and seasonal range of malaria incidence, especially, in poor tropical countries. This paper aims to attempt to conceptualize the potential economic repercussions of such effects with its focus on Ethiopia. Design/methodology/approach: The paper is conceptual and descriptive in its design. It first reviews existing literature and evidence on the economic burdens of malaria, and the impacts of climate change on malaria disease. It then draws the economic implications of the expected malaria risk under the future climate. This is accompanied by a discussion on a set of methods that can be used to quantify the economic effects of malaria with or without climate change. Findings: A review of available evidence shows that climate change is likely to increase the geographic and seasonal range of malaria incidence in Ethiopia. The economic consequences of even a marginal increase in malaria risk will be substantial as one considers the projected impacts of climate change through other channels, the current population exposed to malaria risk and the country’s health system, economic structure and level of investment. The potential effects have the potency to require more household and public spending for health, to perpetuate poverty and inequality and to strain agricultural and regional development. Originality/value: This paper sheds light on the economic implications of climate change impacts on malaria, particularly, in Agrarian countries laying in the tropics. It illustrates how such impacts will interact with other impact channels of climate change, and thus evolve to influence the macro-economy. The paper also proposes a set of methods that can be used to quantify the potential economic effects of malaria. The paper seeks to stimulate future research on this important topic which rather has been neglected. © 2020, Amsalu Woldie Yalew.
  • Item
    Water resources planning in the Upper Niger River basin: Are there gaps between water demand and supply?
    (Amsterdam [u.a.] : Elsevier, 2019) Liersch, Stefan; Fournet, Samuel; Koch, Hagen; Djibo, Abdouramane Gado; Reinhardt, Julia; Kortlandt, Joyce; Van Weert, Frank; Seidou, Ousmane; Klop, Erik; Baker, Chris; Hattermann, Fred F.
    Study region: The Upper Niger and Bani River basins in West Africa. Study focus: The growing demand for food, water, and energy led Mali and Guinea to develop ambitious hydropower and irrigation plans, including the construction of a new dam and the extension of irrigation schemes. These two developments will take place upstream of sensible ecosystem hotspots while the feasibility of development plans in terms of water availability and sustainability is questionable. Where agricultural development in past decades focused mainly on intensifying dry-season crops cultivation, future plans include extension in both the dry and wet seasons. New hydrological insights for the region: Today's irrigation demand corresponds to 7% of the average annual Niger discharge and could account to one third in 2045. An extension of irrigated agriculture is possible in the wet season, while extending dry-season cropping would be largely compromised with the one major existing Sélingué dam. An additional large Fomi or Moussako dam would not completely satisfy dry-season irrigation demands in the 2045 scenario but would reduce the estimated supply gap from 36% to 14%. However, discharge peaks may decrease by 40% reducing the inundated area in the Inner Niger Delta by 21%, while average annual discharge decreases by 30%. Sustainable development should therefore consider investments in water-saving irrigation and management practices to enhance the feasibility of the envisaged irrigation plans instead of completely relying on the construction of a flow regime altering dam. © 2019 The Authors
  • Item
    Infrequent new particle formation over the remote boreal forest of Siberia
    (Amsterdam [u.a.] : Elsevier Science, 2018) Wiedensohler, A.; Ma, N.; Birmili, W.; Heintzenberg, J.; Ditas, F.; Andreae, M.O.; Panov, A.
    Aerosol particle number size distributions (PNSD) were investigated to verify, if extremely low-volatility organic vapors (ELVOC) from natural sources alone could induce new particle formation and growth events over the remote boreal forest region of Siberia, hundreds of kilometers away from significant anthropogenic sources. We re-evaluated observations determined at a height of 300 m of the remote observatory ZOTTO (Zotino Tall Tower Observatory, http://www.zottoproject.org). We found that new particle formation events occurred only on 11 days in a 3-year period, suggesting that homogeneous nucleation with a subsequent condensational growth could not be the major process, maintaining the particle number concentration in the planetary boundary layer of the remote boreal forest area of Siberia. © 2018 Elsevier Ltd
  • Item
    Influence of biomass burning on mixing state of sub-micron aerosol particles in the North China Plain
    (Oxford [u.a.] : Elsevier, 2017) Kecorius, Simonas; Ma, Nan; Teich, Monique; van Pinxteren, Dominik; Zhang, Shenglan; Gröβ, Johannes; Spindler, Gerald; Müller, Konrad; Iinuma, Yoshiteru; Hu, Min; Herrmann, Hartmut; Wiedensohler, Alfred
    Particulate emissions from crop residue burning decrease the air quality as well as influence aerosol radiative properties on a regional scale. The North China Plain (NCP) is known for the large scale biomass burning (BB) of field residues, which often results in heavy haze pollution episodes across the region. We have been able to capture a unique BB episode during the international CAREBeijing-NCP intensive field campaign in Wangdu in the NCP (38.6°N, 115.2°E) from June to July 2014. It was found that aerosol particles originating from this BB event showed a significantly different mixing state compared with clean and non-BB pollution episodes. BB originated particles showed a narrower probability density function (PDF) of shrink factor (SF). And the maximum was found at shrink factor of 0.6, which is higher than in other episodes. The non-volatile particle number fraction during the BB episode decreased to 3% and was the lowest measured value compared to all other predefined episodes. To evaluate the influence of particle mixing state on aerosol single scattering albedo (SSA), SSA at different RHs was simulated using the measured aerosol physical-chemical properties. The differences between the calculated SSA for biomass burning, clean and pollution episodes are significant, meaning that the variation of SSA in different pollution conditions needs to be considered in the evaluation of aerosol direct radiative effects in the NCP. And the calculated SSA was found to be quite sensitive on the mixing state of BC, especially at low-RH condition. The simulated SSA was also compared with the measured values. For all the three predefined episodes, the measured SSA are very close to the calculated ones with assumed mixing states of homogeneously internal and core-shell internal mixing, indicating that both of the conception models are appropriate for the calculation of ambient SSA in the NCP.
  • Item
    A European aerosol phenomenology -4: Harmonized concentrations of carbonaceous aerosol at 10 regional background sites across Europe
    (Amsterdam [u.a.] : Elsevier Science, 2016) Cavalli, F.; Alastuey, A.; Areskoug, H.; Ceburnis, D.; Čech, J.; Genberg, J.; Harrison, R.M.; Jaffrezo, J.L.; Kiss, G.; Laj, P.; Mihalopoulos, N.; Perez, N.; Quincey, P.; Schwarz, J.; Sellegri, K.; Spindler, G.; Swietlicki, E.; Theodosi, C.; Yttri, K.E.; Aas, W.; Putaud, J.P.
    Although particulate organic and elemental carbon (OC and EC) are important constituents of the suspended atmospheric particulate matter (PM), measurements of OC and EC are much less common and more uncertain than measurements of e.g. the ionic components of PM. In the framework of atmospheric research infrastructures supported by the European Union, actions have been undertaken to determine and mitigate sampling artefacts, and assess the comparability of OC and EC data obtained in a network of 10 atmospheric observatories across Europe. Positive sampling artefacts (from 0.4 to 2.8 μg C/m3) and analytical discrepancies (between −50% and +40% for the EC/TC ratio) have been taken into account to generate a robust data set, from which we established the phenomenology of carbonaceous aerosols at regional background sites in Europe. Across the network, TC and EC annual average concentrations range from 0.4 to 9 μg C/m3, and from 0.1 to 2 μg C/m3, respectively. TC/PM10 annual mean ratios range from 0.11 at a Mediterranean site to 0.34 at the most polluted continental site, and TC/PM2.5 ratios are slightly greater at all sites (0.15–0.42). EC/TC annual mean ratios range from 0.10 to 0.22, and do not depend much on PM concentration levels, especially in winter. Seasonal variations in PM and TC concentrations, and in TC/PM and EC/TC ratios, differ across the network, which can be explained by seasonal changes in PM source contributions at some sites.
  • Item
    Detection of RO2 radicals and other products from cyclohexene ozonolysis with NH4+ and acetate chemical ionization mass spectrometry
    (Oxford [u.a.] : Elsevier, 2018) Hansel, Armin; Scholz, Wiebke; Mentler, Bernhard; Fischer, Lukas; Berndt, Torsten
    The performance of the novel ammonium chemical ionization time of flight mass spectrometer (NH4+-CI3–TOF) utilizing NH4+ adduct ion chemistry to measure first generation oxidized product molecules (OMs) as well as highly oxidized organic molecules (HOMs) was investigated for the first time. The gas-phase ozonolysis of cyclohexene served as a first test system. Experiments have been carried out in the TROPOS free-jet flow system at close to atmospheric conditions. Product ion signals were simultaneously observed by the NH4+-CI3-TOF and the acetate chemical ionization atmospheric pressure interface time of flight mass spectrometer (acetate-CI-API-TOF). Both instruments are in remarkable good agreement within a factor of two for HOMs. For OMs not containing an OOH group the acetate technique can considerably underestimate OM concentrations by 2–3 orders of magnitude. First steps of cyclohexene ozonolysis generate ten different main products, detected with the ammonium-CI3-TOF, comprising 93% of observed OMs. The remaining 7% are distributed over several minor products that can be attributed to HOMs, predominately to highly oxidized RO2 radicals. Summing up, observed ammonium-CI3-TOF products yield 5.6 × 109 molecules cm−³ in excellent agreement with the amount of reacted cyclohexene of 4.5 × 109 molecules cm−³ for reactant concentrations of [O3] = 2.25 × 1012 molecules cm−³ and [cyclohexene] = 2.0 × 1012 molecules cm−³ and a reaction time of 7.9 s. NH4+ adduct ion chemistry is a promising CIMS technology for achieving carbon-closure due to the unique opportunity for complete detection of the whole product distribution including also peroxy radicals, and consequently, for a much better understanding of oxidation processes.
  • Item
    Investigating African trace gas sources, vertical transport, and oxidation using IAGOS-CARIBIC measurements between Germany and South Africa between 2009 and 2011
    (Oxford [u.a.] : Elsevier, 2017) Thorenz, U.R.; Baker, A.K.; Leedham Elvidge, E.C.; Sauvage, C.; Riede, H.; van Velthoven, P.F.J.; Hermann, M.; Weigelt, A.; Oram, D.E.; Brenninkmeijer, C.A.M.; Zahn, A.; Williams, J.
    Between March 2009 and March 2011 a commercial airliner equipped with a custom built measurement container (IAGOS-CARIBIC observatory) conducted 13 flights between South Africa and Germany at 10–12 km altitude, traversing the African continent north-south. In-situ measurements of trace gases (CO, CH4, H2O) and aerosol particles indicated that strong surface sources (like biomass burning) and rapid vertical transport combine to generate maximum concentrations in the latitudinal range between 10°N and 10°S coincident with the inter-tropical convergence zone (ITCZ). Pressurized air samples collected during these flights were subsequently analyzed for a suite of trace gases including C2-C8 non-methane hydrocarbons (NMHC) and halocarbons. These shorter-lived trace gases, originating from both natural and anthropogenic sources, also showed near equatorial maxima highlighting the effectiveness of convective transport in this region. Two source apportionment methods were used to investigate the specific sources of NMHC: positive matrix factorization (PMF), which is used for the first time for NMHC analysis in the upper troposphere (UT), and enhancement ratios to CO. Using the PMF method three characteristic airmass types were identified based on the different trace gas concentrations they obtained: biomass burning, fossil fuel emissions, and “background” air. The first two sources were defined with reference to previously reported surface source characterizations, while the term “background” was given to air masses in which the concentration ratios approached that of the lifetime ratios. Comparison of enhancement ratios between NMHC and CO for the subset of air samples that had experienced recent contact with the planetary boundary layer (PBL) to literature values showed that the burning of savanna and tropical forest is likely the main source of NMHC in the African upper troposphere (10–12 km). Photochemical aging patterns for the samples with PBL contact revealed that the air had different degradation histories depending on the hemisphere in which they were emitted. In the southern hemisphere (SH) air masses experienced more dilution by clean background air whereas in the northern hemisphere (NH) air masses are less diluted or mixed with background air still containing longer lived NMHC. Using NMHC photochemical clocks ozone production was seen in the BB outflow above Africa in the NH.
  • Item
    Aerosol particle mixing state, refractory particle number size distributions and emission factors in a polluted urban environment: Case study of Metro Manila, Philippines
    (Oxford [u.a.] : Elsevier, 2017) Kecorius, Simonas; Madueño, Leizel; Vallar, Edgar; Alas, Honey; Betito, Grace; Birmili, Wolfram; Cambaliza, Maria Obiminda; Catipay, Grethyl; Gonzaga-Cayetano, Mylene; Galvez, Maria Cecilia; Lorenzo, Genie; Müller, Thomas; Simpas, James B.; Tamayo, Everlyn Gayle; Wiedensohler, Alfred
    Ultrafine soot particles (black carbon, BC) in urban environments are related to adverse respiratory and cardiovascular effects, increased cases of asthma and premature deaths. These problems are especially pronounced in developing megacities in South-East Asia, Latin America, and Africa, where unsustainable urbanization ant outdated environmental protection legislation resulted in severe degradation of urban air quality in terms of black carbon emission. Since ultrafine soot particles do often not lead to enhanced PM10 and PM2.5 mass concentration, the risks related to ultrafine particle pollution may therefore be significantly underestimated compared to the contribution of secondary aerosol constituents. To increase the awareness of the potential toxicological relevant problems of ultrafine black carbon particles, we conducted a case study in Metro Manila, the capital of the Philippines. Here, we present a part of the results from a detailed field campaign, called Manila Aerosol Characterization Experiment (MACE, 2015). Measurements took place from May to June 2015 with the focus on the state of mixing of aerosol particles. The results were alarming, showing the abundance of externally mixed refractory particles (soot proxy) at street site with a maximum daily number concentration of approximately 15000 #/cm3. That is up to 10 times higher than in cities of Western countries. We also found that the soot particle mass contributed from 55 to 75% of total street site PM2.5. The retrieved refractory particle number size distribution appeared to be a superposition of 2 ultrafine modes at 20 and 80 nm with a corresponding contribution to the total refractory particle number of 45 and 55%, respectively. The particles in the 20 nm mode were most likely ash from metallic additives in lubricating oil, tiny carbonaceous particles and/or nucleated and oxidized organic polymers, while bigger ones (80 nm) were soot agglomerates. To the best of the authors’ knowledge, no other studies reported such high number concentration of ultrafine refractory particles under ambient conditions. Inverse modeling of emission factors of refractory particle number size distributions revealed that diesel-fed public utility Jeepneys, commonly used for public transportation, are responsible for 94% of total roadside emitted refractory particle mass. The observed results showed that the majority of urban pollution in Metro Manila is dominated by carbonaceous aerosol. This suggests that PM10 or PM2.5 metrics do not fully describe possible health related effects in this kind of urban environments. Extremely high concentrations of ultrafine particles have been and will continue to induce adverse health related effects, because of their potential toxicity. We imply that in megacities, where the major fraction of particulates originates from the transport sector, PM10 or PM2.5 mass concentration should be complemented by legislative measurements of equivalent black carbon mass concentration.
  • Item
    Black carbon emission and transport mechanisms to the free troposphere at the La Paz/El Alto (Bolivia) metropolitan area based on the Day of Census (2012)
    (Oxford [u.a.] : Elsevier, 2018) Wiedensohler, A.; Andrade, M.; Weinhold, K.; Müller, T.; Birmili, W.; Velarde, F.; Moreno, I.; Forno, R.; Sanchez, M.F.; Laj, P.; Ginot, P.; Whiteman, D.N.; Krejci, R.; Sellegri, K.; Reichler, T.
    Urban development, growing industrialization, and increasing demand for mobility have led to elevated levels of air pollution in many large cities in Latin America, where air quality standards and WHO guidelines are frequently exceeded. The conurbation of the metropolitan area of La Paz/El Alto is one of the fastest growing urban settlements in South America with the particularity of being located in a very complex terrain at a high altitude. As many large cities or metropolitan areas, the metropolitan area of La Paz/El Alto and the Altiplano region are facing air quality deterioration. Long-term measurement data of the equivalent black carbon (eBC) mass concentrations and particle number size distributions (PNSD) from the Global Atmosphere Watch Observatory Chacaltaya (CHC; 5240 m a.s.l., above sea level) indicated a systematic transport of particle matter from the metropolitan area of La Paz/El Alto to this high altitude station and subsequently to the lower free troposphere. To better understand the sources and the transport mechanisms, we conducted eBC and PNSDs measurements during an intensive campaign at two locations in the urban area of La Paz/El Alto from September to November 2012. While the airport of El Alto site (4040 m a.s.l.) can be seen as representative of the urban and Altiplano background, the road site located in Central La Paz (3590 m a.s.l.) is representative for heavy traffic-dominated conditions. Peaks of eBC mass concentrations up to 5 μg m−3 were observed at the El Alto background site in the early morning and evening, while minimum values were detected in the early afternoon, mainly due to thermal convection and change of the planetary boundary layer height. The traffic-related eBC mass concentrations at the road site reached maximum values of 10–20 μg m−3. A complete traffic ban on the specific Bolivian Day of Census (November 21, 2012) led to a decrease of eBC below 1 μg m−3 at the road site for the entire day. Compared to the day before and after, particle number concentrations decreased by a factor between 5 and 25 over the particle size range from 10 to 800 nm, while the submicrometer particle mass concentration dropped by approximately 80%. These results indicate that traffic is the dominating source of BC and particulate air pollution in the metropolitan area of La Paz/El Alto. In general, the diurnal cycle of eBC mass concentration at the Chacaltaya observatory is anti-correlated to the observations at the El Alto background site. This pattern indicates that the traffic-related particulate matter, including BC, is transported to higher altitudes with the developing of the boundary layer during daytime. The metropolitan area of La Paz/El Alto seems to be a significant source for BC of the regional lower free troposphere. From there, BC can be transported over long distances and exert impact on climate and composition of remote southern hemisphere.