Search Results

Now showing 1 - 7 of 7
  • Item
    Long-term behavior of the concentration of the minor constituents in the mesosphere-a model study
    (Göttingen : Copernicus, 2009) Grygalashvyly, M.; Sonnemann, G.R.; Hartogh, P.
    We investigate the influence the rising concentrations of methane, nitrous oxide and carbon dioxide which have occurred since the pre-industrial era, have had on the chemistry of the mesosphere. For this investigation we use our global 3-D-model COMMA-IAP which was designed for the exploration of the MLT-region and in particular the extended mesopause region. Assumptions and approximations for the trends in the Lyman-flux (needed for the water vapor dissociation rate), methane and the water vapor mixing ratio at the hygropause are necessary to accomplish this study. To approximate the solar Lyman-α flux back to the pre-industrial time, we derived a quadratic fit using the sunspot number record which extends back to 1749 and is the only solar proxy available for the Lyman-α flux prior to 1947. We assume that methane increases with a constant growth rate from the pre-industrial era to the present. An unsolved problem for the model calculations consists of how the water vapor mixing ratio at the hygropause should be specified during this period. We assume that the hygropause was dryer during pre-industrial times than the present. As a consequence of methane oxidation, the model simulation indicates that the middle atmosphere has become more humid as a result of the rising methane concentration, but with some dependence on height and with a small time delay of few years. The solar influence on the water vapor mixing ratio is insignificant below about 80 km in summer high latitudes, but becomes increasingly more important above this altitude. The enhanced water vapor concentration increasesthe hydrogen radical concentration and reduces the mesospheric ozone. A second region of stronger ozone decrease is located in the vicinity of the stratopause. Increases in CO2 concentration enhance slightly the concentration of CO in the mesosphere. However, its influence upon the chemistry is small and its main effect is connected with a cooling of the upper atmosphere. The long-term behavior of water vapor is discussed in particular with respect to its impact on the NLC region.
  • Item
    Zonal asymmetries in middle atmospheric ozone and water vapour derived from Odin satellite data 2001-2010
    (Göttingen : Copernicus, 2011) Gabriel, A.; Körnich, H.; Lossow, S.; Peters, D.H.W.; Urban, J.; Murtagh, D.
    Stationary wave patterns in middle atmospheric ozone (O3) and water vapour (H2O) are an important factor in the atmospheric circulation, but there is a strong gap in diagnosing and understanding their configuration and origin. Based on Odin satellite data from 2001 to 2010 we investigate the stationary wave patterns in O3 and H2O as indicated by the seasonal long-term means of the zonally asymmetric components O3* Combining double low line O3-[O3] and H2O* Combining double low line H2O-[H2O] ([O3], [H2O]: zonal means). At mid-and polar latitudes we find a pronounced wave one pattern in both constituents. In the Northern Hemisphere, the wave patterns increase during autumn, maintain their strength during winter and decay during spring, with maximum amplitudes of about 10-20 % of the zonal mean values. During winter, the wave one in O3* shows a maximum over the North Pacific/Aleutians and a minimum over the North Atlantic/Northern Europe and a double-peak structure with enhanced amplitude in the lower and in the upper stratosphere. The wave one in H2O* extends from the lower stratosphere to the upper mesosphere with a westward shift in phase with increasing height including a jump in phase at upper stratosphere altitudes. In the Southern Hemisphere, similar wave patterns occur mainly during southern spring. By comparing the observed wave patterns in O 3* and H2O3* with a linear solution of a steady-state transport equation for a zonally asymmetric tracer component we find that these wave patterns are primarily due to zonally asymmetric transport by geostrophically balanced winds, which are derived from observed temperature profiles. In addition temperature-dependent photochemistry contributes substantially to the spatial structure of the wave pattern in O 3* . Further influences, e.g., zonal asymmetries in eddy mixing processes, are discussed.
  • Item
    Tracing the Snowball bifurcation of aquaplanets through time reveals a fundamental shift in critical-state dynamics
    (Göttingen : Copernicus, 2023) Feulner, Georg; Bukenberger, Mona; Petri, Stefan
    The instability with respect to global glaciation is a fundamental property of the climate system caused by the positive ice-albedo feedback. The atmospheric concentration of carbon dioxide (CO2) at which this Snowball bifurcation occurs changes through Earth's history, most notably because of the slowly increasing solar luminosity. Quantifying this critical CO2 concentration is not only interesting from a climate dynamics perspective but also constitutes an important prerequisite for understanding past Snowball Earth episodes, as well as the conditions for habitability on Earth and other planets. Earlier studies are limited to investigations with very simple climate models for Earth's entire history or studies of individual time slices carried out with a variety of more complex models and for different boundary conditions, making comparisons and the identification of secular changes difficult. Here, we use a coupled climate model of intermediate complexity to trace the Snowball bifurcation of an aquaplanet through Earth's history in one consistent model framework. We find that the critical CO2 concentration decreased more or less logarithmically with increasing solar luminosity until about 1 billion years ago but dropped faster in more recent times. Furthermore, there was a fundamental shift in the dynamics of the critical state about 1.2 billion years ago (unrelated to the downturn in critical CO2 values), driven by the interplay of wind-driven sea-ice dynamics and the surface energy balance: for critical states at low solar luminosities, the ice line lies in the Ferrel cell, stabilised by the poleward winds despite moderate meridional temperature gradients under strong greenhouse warming. For critical states at high solar luminosities, on the other hand, the ice line rests at the Hadley cell boundary, stabilised against the equatorward winds by steep meridional temperature gradients resulting from the increased solar energy input at lower latitudes and stronger Ekman transport in the ocean.
  • Item
    Effective CO2 lifetime and future CO2 levels based on fit function
    (Göttingen : Copernicus, 2013) Sonnemann, G.R.; Grygalashvyly, M.
    The estimated global CO2 emission rates and the measured atmospheric CO2 concentrations show that only a certain share of the emitted CO2 accumulates in the atmosphere. For given atmospheric emissions of CO2, the effective lifetime determines its accumulation in the atmosphere and, consequently, its impact on the future global warming. We found that on average the inferred effective lifetime of CO2 decreases as its atmospheric concentration increases, reducing the rate of its accumulation in the atmosphere. We derived a power function that fits the varying lifetimes. Based on this fitting function, we calculated the increase of CO2 for different scenarios of future global emission rates.
  • Item
    Global annual methane emission rate derived from its current atmospheric mixing ratio and estimated lifetime
    (Göttingen : Copernicus, 2014) Sonnemann, G.R.; Grygalashvyly, M.
    We use the estimated lifetime of methane (CH4), the current methane concentration, and its annual growth rate to calculate the global methane emission rate. The upper and lower limits of the annual global methane emission rate, depending on loss of CH4 into the stratosphere and methane consuming bacteria, amounts to 648.0 Mt a-1 and 608.0 Mt a-1. These values are in reasonable agreement with satellite and with much more accurate in situ measurements of methane. We estimate a mean tropospheric and mass-weighted temperature related to the reaction rate and employ a mean OH-concentration to calculate a mean methane lifetime. The estimated atmospheric lifetime of methane amounts to 8.28 years and 8.84 years, respectively. In order to improve the analysis a realistic 3D-calculations should be performed.
  • Item
    Upper stratospheric ozone decrease events due to a positive feedback between ozone and the ozone dissociation rate
    (Göttingen : Copernicus, 2009) Sonnemann, G.R.; Hartogh, P.
    Ozone measurements taken with a ground based microwave instrument at Lindau (51.66° N, 10.13° E) over some years showed strong ozone decrease events within the stratopause region, particularly during the winter half-year. These events are characterized by a marked drop of the ozone mixing ratio from two to three ppmv to less than half a ppmv in extreme cases. Simultaneous water vapor measurements at the same place, also carried out by a microwave instrument, showed a strong increase of its mixing ratio and the temperature was also enhanced during these episodes. The theoretical analysis brought evidence that these events result from a positive feedback in the complex radiatively-chemical system between the ozone column density and the ozone dissociation rate.
  • Item
    Particle hygroscopicity during atmospheric new particle formation events: Implications for the chemical species contributing to particle growth
    (Göttingen : Copernicus, 2013) Wu, Z.; Birmili, W.; Poulain, L.; Poulain, L.; Merkel, M.; Fahlbusch, B.; Van Pinxteren, D.; Herrmann, H.; Wiedensohler, A.
    This study examines the hygroscopicity of newly formed particles (diameters range 25-45 nm) during two atmospheric new particle formation (NPF) events in the German mid-level mountains during the Hill Cap Cloud Thuringia 2010 (HCCT-2010) field experiment. At the end of the NPF event involving clear particle growth, we measured an unusually high soluble particle fraction of 58.5% at 45 nm particle size. The particle growth rate contributed through sulfuric acid condensation only accounts for around 6.5% of the observed growth rate. Estimations showed that sulfuric acid condensation explained, however, only around 10% of that soluble particle fraction. Therefore, the formation of additional water-soluble matter appears imperative to explain the missing soluble fraction. Although direct evidence is missing, we consider water-soluble organics as candidates for this mechanism. For the case with clear growth process, the particle growth rate was determined by two alternative methods based on tracking the mode diameter of the nucleation mode. The mean particle growth rate obtained from the inter-site data comparison using Lagrangian consideration is 3.8 (± 2.6) nm h-1. During the same period, the growth rate calculated based on one site data is 5.0 nm h-1 using log-normal distribution function method. In light of the fact that considerable uncertainties could be involved in both methods, we consider both estimated growth rates consistent.