Search Results

Now showing 1 - 2 of 2
  • Item
    Model simulations of chemical effects of sprites in relation with observed HO2 enhancements over sprite-producing thunderstorms
    (Katlenburg-Lindau : European Geosciences Union, 2021) Winkler, Holger; Yamada, Takayoshi; Kasai, Yasuko; Berger, Uwe; Notholt, Justus
    Recently, measurements by the Superconducting Submillimeter-Wave Limb Emission Sounder (SMILES) satellite instrument have been presented which indicate an increase in mesospheric HO2 above sprite-producing thunderstorms. The aim of this paper is to compare these observations to model simulations of chemical sprite effects. A plasma chemistry model in combination with a vertical transport module was used to simulate the impact of a streamer discharge in the altitude range 70–80 km, corresponding to one of the observed sprite events. Additionally, a horizontal transport and dispersion model was used to simulate advection and expansion of the sprite air masses. The model simulations predict a production of hydrogen radicals mainly due to reactions of proton hydrates formed after the electrical discharge. The net effect is a conversion of water molecules into H+OH. This leads to increasing HO2 concentrations a few hours after the electric breakdown. Due to the modelled long-lasting increase in HO2 after a sprite discharge, an accumulation of HO2 produced by several sprites appears possible. However, the number of sprites needed to explain the observed HO2 enhancements is unrealistically large. At least for the lower measurement tangent heights, the production mechanism of HO2 predicted by the model might contribute to the observed enhancements.
  • Item
    A simple equation for the melt elevation feedback of ice sheets
    (Katlenburg-Lindau : European Geosciences Union, 2016) Levermann, Anders; Winkelmann, Ricarda
    In recent decades, the Greenland Ice Sheet has been losing mass and has thereby contributed to global sea-level rise. The rate of ice loss is highly relevant for coastal protection worldwide. The ice loss is likely to increase under future warming. Beyond a critical temperature threshold, a meltdown of the Greenland Ice Sheet is induced by the self-enforcing feedback between its lowering surface elevation and its increasing surface mass loss: the more ice that is lost, the lower the ice surface and the warmer the surface air temperature, which fosters further melting and ice loss. The computation of this rate so far relies on complex numerical models which are the appropriate tools for capturing the complexity of the problem. By contrast we aim here at gaining a conceptual understanding by deriving a purposefully simple equation for the self-enforcing feedback which is then used to estimate the melt time for different levels of warming using three observable characteristics of the ice sheet itself and its surroundings. The analysis is purely conceptual in nature. It is missing important processes like ice dynamics for it to be useful for applications to sea-level rise on centennial timescales, but if the volume loss is dominated by the feedback, the resulting logarithmic equation unifies existing numerical simulations and shows that the melt time depends strongly on the level of warming with a critical slowdown near the threshold: the median time to lose 10 % of the present-day ice volume varies between about 3500 years for a temperature level of 0.5 °C above the threshold and 500 years for 5 °C. Unless future observations show a significantly higher melting sensitivity than currently observed, a complete meltdown is unlikely within the next 2000 years without significant ice-dynamical contributions.