Search Results

Now showing 1 - 10 of 94
  • Item
    DIVA: An iterative method for building modular integrated models
    (München : European Geopyhsical Union, 2005) Hinkel, J.
    Integrated modelling of global environmental change impacts faces the challenge that knowledge from the domains of Natural and Social Science must be integrated. This is complicated by often incompatible terminology and the fact that the interactions between subsystems are usually not fully understood at the start of the project. While a modular modelling approach is necessary to address these challenges, it is not sufficient. The remaining question is how the modelled system shall be cut down into modules. While no generic answer can be given to this question, communication tools can be provided to support the process of modularisation and integration. Along those lines of thought a method for building modular integrated models was developed within the EU project DINAS-COAST and applied to construct a first model, which assesses the vulnerability of the world’s coasts to climate change and sea-level-rise. The method focuses on the development of a common language and offers domain experts an intuitive interface to code their knowledge in form of modules. However, instead of rigorously defining interfaces between the subsystems at the project’s beginning, an iterative model development process is defined and tools to facilitate communication and collaboration are provided. This flexible approach has the advantage that increased understanding about subsystem interactions, gained during the project’s lifetime, can immediately be reflected in the model.
  • Item
    Agents, Bayes, and Climatic Risks - a modular modelling approach
    (München : European Geopyhsical Union, 2005) Haas, A.; Jaeger, C.
    When insurance firms, energy companies, governments, NGOs, and other agents strive to manage climatic risks, it is by no way clear what the aggregate outcome should and will be. As a framework for investigating this subject, we present the LAGOM model family. It is based on modules depicting learning social agents. For managing climate risks, our agents use second order probabilities and update them by means of a Bayesian mechanism while differing in priors and risk aversion. The interactions between these modules and the aggregate outcomes of their actions are implemented using further modules. The software system is implemented as a series of parallel processes using the CIAMn approach. It is possible to couple modules irrespective of the language they are written in, the operating system under which they are run, and the physical location of the machine
  • Item
    Impacts of global change on water-related sectors and society in a trans-boundary central European river basin – Part 2: From eco-hydrology to water demand management
    (München : European Geopyhsical Union, 2007) Conradt, T.; Kaltofen, M.; Hentschel, M.; Hattermann, F.F.; Wechsung, F.
    This second part of the paper presents the details of the eco-hydrological model SWIM simulating the natural water supply and its coupling to WBalMo, a water management model. Based on the climate scenarios of the STAR model, SWIM simulates the natural water and matter fluxes for the entire Elbe River area. All relevant processes are modelled for hydrotopes and the resulting discharges are accumulated in subbasins. The output data are input for the water management model WBalMo and the quality models Moneris and QSim. WBalMo takes storage management, inputs and withdrawals into account and analyses how demands by industry, power plants and households will be met at changing natural supply conditions. Some of the first results shall be presented here.
  • Item
    Integrated analysis of water quality in a mesoscale lowland basin
    (München : European Geopyhsical Union, 2005) Habeck, A.; Krysanova, V.; Hattermann, F.
    This article describes a modelling study on nitrogen transport from diffuse sources in the Nuthe catchment, representing a typical lowland region in the north-eastern Germany. Building on a hydrological validation performed in advance using the ecohydrological model SWIM, the nitrogen flows were simulated over a 20-year period (1981-2000). The relatively good quality of the input data, particularly for the years from 1993 to 2000, enabled the nitrogen flows to be reproduced sufficiently well, although modelling nutrient flows is always associated with a great deal of uncertainty. Subsequently, scenario calculations were carried out in order to investigate how nitrogen transport from the catchment could be further reduced. The selected scenario results with the greatest reduction of nitrogen washoff will briefly be presented in the paper.
  • Item
    Potential climate change impacts on the water balance of subcatchments of the River Spree, Germany
    (München : European Geopyhsical Union, 2012) Pohle, I.; Koch, H.; Grünewald, U.
    Lusatia is considered one of the driest regions of Germany. The climatic water balance is negative even under current climate conditions. Due to global climate change, increased temperatures and a shift of precipitation from summer to winter are expected. Therefore, it is of major interest whether the excess water in winter can be stored and to which extent it is used up on increasing evapotranspiration. Thus, this study focuses on estimating potential climate change impacts on the water balance of two subcatchments of the River Spree using the Soil and Water Integrated Model (SWIM). Climate input was taken from 100 realisations each of two scenarios of the STatistical Analogue Resampling scheme STAR assuming a further temperature increase of 0 K (scenario A) and 2 K by the year 2055 (scenario B) respectively. Resulting from increased temperatures and a shift in precipitation from summer to winter actual evapotranspiration is supposed to increase in winter and early spring, but to decrease in later spring and early summer. This is less pronounced for scenario A than for scenario B. Consequently, also the decrease in discharge and groundwater recharge in late spring is lower for scenario A than for scenario B. The highest differences of runoff generation and groundwater recharge between the two scenarios but also the highest ranges within the scenarios occur in summer and early autumn. It is planned to estimate potential climate change for the catchments of Spree, Schwarze Elster and Lusatian Neisse.
  • Item
    Emulating atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 - Part 2: Applications
    (München : European Geopyhsical Union, 2011) Meinshausen, M.; Raper, S.C.B.; Wigley, T.M.L.
    Intercomparisons of coupled atmosphere-ocean general circulation models (AOGCMs) and carbon cycle models are important for galvanizing our current scientific knowledge to project future climate. Interpreting such intercomparisons faces major challenges, not least because different models have been forced with different sets of forcing agents. Here, we show how an emulation approach with MAGICC6 can address such problems. In a companion paper (Meinshausen et al., 2011a), we show how the lower complexity carbon cycle-climate model MAGICC6 can be calibrated to emulate, with considerable accuracy, globally aggregated characteristics of these more complex models. Building on that, we examine here the Coupled Model Intercomparison Project's Phase 3 results (CMIP3). If forcing agents missed by individual AOGCMs in CMIP3 are considered, this reduces ensemble average temperature change from pre-industrial times to 2100 under SRES A1B by 0.4 °C. Differences in the results from the 1980 to 1999 base period (as reported in IPCC AR4) to 2100 are negligible, however, although there are some differences in the trajectories over the 21st century. In a second part of this study, we consider the new RCP scenarios that are to be investigated under the forthcoming CMIP5 intercomparison for the IPCC Fifth Assessment Report. For the highest scenario, RCP8.5, relative to pre-industrial levels, we project a median warming of around 4.6 °C by 2100 and more than 7 °C by 2300. For the lowest RCP scenario, RCP3-PD, the corresponding warming is around 1.5 °C by 2100, decreasing to around 1.1 °C by 2300 based on our AOGCM and carbon cycle model emulations. Implied cumulative CO2 emissions over the 21st century for RCP8.5 and RCP3-PD are 1881 GtC (1697 to 2034 GtC, 80% uncertainty range) and 381 GtC (334 to 488 GtC), when prescribing CO2 concentrations and accounting for uncertainty in the carbon cycle. Lastly, we assess the reasons why a previous MAGICC version (4.2) used in IPCC AR4 gave roughly 10% larger warmings over the 21st century compared to the CMIP3 average. We find that forcing differences and the use of slightly too high climate sensitivities inferred from idealized high-forcing runs were the major reasons for this difference.
  • Item
    Retrievals of chlorine chemistry kinetic parameters from Antarctic ClO microwave radiometer measurements
    (München : European Geopyhsical Union, 2011) Kremser, S.; Schofield, R.; Bodeker, G.E.; Connor, B.J.; Rex, M.; Barret, J.; Mooney, T.; Salawitch, R.J.; Canty, T.; Frieler, K.; Chipperfield, M.P.; Langematz, U.; Feng, W.
    Key kinetic parameters governing the partitioning of chlorine species in the Antarctic polar stratosphere were retrieved from 28 days of chlorine monoxide (ClO) microwave radiometer measurements made during the late winter/early spring of 2005 at Scott Base (77.85° S, 166.75° E). During day-time the loss of the ClO dimer chlorine peroxide (ClOOCl) occurs mainly by photolysis. Some time after sunrise, a photochemical equilibrium is established and the ClO/ClOOCl partitioning is determined by the ratio of the photolysis frequency, J, and the dimer formation rate, kf. The values of J and kf from laboratory studies remain uncertain to a considerable extent, and as a complement to these ongoing studies, the goal of this work is to provide a constraint on that uncertainty based on observations of ClO profiles in the Antarctic. First an optimal estimation technique was used to derive J/kf ratios for a range of Keq values. The optimal estimation forward model was a photochemical box model that takes J, kf, and Keq as inputs, together with a priori profiles of activated chlorine (ClOx = ClO+2×ClOOCl), profiles of ozone, temperature, and pressure. JPL06 kinetics are used as a priori in the optimal estimation and for all other chemistry in the forward model. Using the more recent JPL09 kinetics results in insignificant differences in the retrieved value of J/kf. A complementary approach was used to derive the optimal kinetic parameters; the full parameter space of J, kf, Keq and ClOx was sampled to find the minimum in differences between measured and modelled ClO profiles. Furthermore, values of Keq up to 2.0 times larger than recommended by JPL06 were explored to test the sensitivity of the J/kf ratio to changes in Keq. The results show that the retrieved J/kf ratios bracket the range of 1.23 to 1.97 times the J/kf value recommended by JPL06 over the range of Keq values considered. The retrieved J/kf ratios lie in the lower half of the large uncertainty range of J/kf recommended by JPL06 and towards the upper portion of the smaller uncertainty range recommended by JPL09.
  • Item
    On the importance of cascading moisture recycling in South America
    (München : European Geopyhsical Union, 2014) Zemp, D.C.; Schleussner, C.-F.; Barbosa, H.M.J.; van der Ent, R.J.; Donges, J.F.; Heinke, J.; Sampaio, G.; Rammig, A.
    Continental moisture recycling is a crucial process of the South American climate system. In particular, evapotranspiration from the Amazon basin contributes substantially to precipitation regionally as well as over other remote regions such as the La Plata basin. Here we present an in-depth analysis of South American moisture recycling mechanisms. In particular, we quantify the importance of cascading moisture recycling (CMR), which describes moisture transport between two locations on the continent that involves re-evaporation cycles along the way. Using an Eulerian atmospheric moisture tracking model forced by a combination of several historical climate data sets, we were able to construct a complex network of moisture recycling for South America. Our results show that CMR contributes about 9–10% to the total precipitation over South America and 17–18% over the La Plata basin. CMR increases the fraction of total precipitation over the La Plata basin that originates from the Amazon basin from 18–23 to 24–29% during the wet season. We also show that the south-western part of the Amazon basin is not only a direct source of rainfall over the La Plata basin, but also a key intermediary region that distributes moisture originating from the entire Amazon basin towards the La Plata basin during the wet season. Our results suggest that land use change in this region might have a stronger impact on downwind rainfall than previously thought. Using complex network analysis techniques, we find the eastern side of the sub-tropical Andes to be a key region where CMR pathways are channeled. This study offers a better understanding of the interactions between the vegetation and the atmosphere on the water cycle, which is needed in a context of land use and climate change in South America.
  • Item
    Coincidences of climate extremes and anomalous vegetation responses: Comparing tree ring patterns to simulated productivity
    (München : European Geopyhsical Union, 2015) Rammig, A.; Wiedermann, M.; Donges, J.F.; Babst, F.; von Bloh, W.; Frank, D.; Thonicke, K.; Mahecha, M.D.
    Climate extremes can trigger exceptional responses in terrestrial ecosystems, for instance by altering growth or mortality rates. Such effects are often manifested in reductions in net primary productivity (NPP). Investigating a Europe-wide network of annual radial tree growth records confirms this pattern: we find that 28% of tree ring width (TRW) indices are below two standard deviations in years in which extremely low precipitation, high temperatures or the combination of both noticeably affect tree growth. Based on these findings, we investigate possibilities for detecting climate-driven patterns in long-term TRW data to evaluate state-of-the-art dynamic vegetation models such as the Lund-Potsdam-Jena dynamic global vegetation model for managed land (LPJmL). The major problem in this context is that LPJmL simulates NPP but not explicitly the radial tree growth, and we need to develop a generic method to allow for a comparison between simulated and observed response patterns. We propose an analysis scheme that quantifies the coincidence rate of climate extremes with some biotic responses (here TRW or simulated NPP). We find a relative reduction of 34% in simulated NPP during precipitation, temperature and combined extremes. This reduction is comparable to the TRW response patterns, but the model responds much more sensitively to drought stress. We identify 10 extreme years during the 20th century during which both model and measurements indicate high coincidence rates across Europe. However, we detect substantial regional differences in simulated and observed responses to climatic extreme events. One explanation for this discrepancy could be the tendency of tree ring data to originate from climatically stressed sites. The difference between model and observed data is amplified by the fact that dynamic vegetation models are designed to simulate mean ecosystem responses on landscape or regional scales. We find that both simulation results and measurements display carry-over effects from climate anomalies during the previous year. We conclude that radial tree growth chronologies provide a suitable basis for generic model benchmarks. The broad application of coincidence analysis in generic model benchmarks along with an increased availability of representative long-term measurements and improved process-based models will refine projections of the long-term carbon balance in terrestrial ecosystems.
  • Item
    Progress and challenges in using stable isotopes to trace plant carbon and water relations across scales
    (München : European Geopyhsical Union, 2012) Werner, C.; Schnyder, H.; Cunt, M.; Keitel, C.; Zeeman, M.J.; Dawson, T.E.; Badeck, F.-W.; Brugnoli, E.; Ghashghaie, J.; Grams, T.E.E.; Kayler, Z.E.; Lakatos, M.; Lee, X.; Máguas, C.; Ogée, J.; Rascher, K.G.; Siegwolf, R.T.W.; Unger, S.; Welker, J.; Wingate, L.; Gessler, A.
    Stable isotope analysis is a powerful tool for assessing plant carbon and water relations and their impact on biogeochemical processes at different scales. Our process-based understanding of stable isotope signals, as well as technological developments, has progressed significantly, opening new frontiers in ecological and interdisciplinary research. This has promoted the broad utilisation of carbon, oxygen and hydrogen isotope applications to gain insight into plant carbon and water cycling and their interaction with the atmosphere and pedosphere. Here, we highlight specific areas of recent progress and new research challenges in plant carbon and water relations, using selected examples covering scales from the leaf to the regional scale. Further, we discuss strengths and limitations of recent technological developments and approaches and highlight new opportunities arising from unprecedented temporal and spatial resolution of stable isotope measurements.