Search Results

Now showing 1 - 2 of 2
  • Item
    On the Sensitivity of the Devonian Climate to Continental Configuration, Vegetation Cover, Orbital Configuration, CO 2 Concentration, and Insolation
    (Hoboken, NJ : Wiley, 2019) Brugger, Julia; Hofmann, Matthias; Petri, Stefan; Feulner, Georg
    During the Devonian (419 to 359 million years ago), life on Earth witnessed decisive evolutionary breakthroughs, most prominently the colonization of land by vascular plants and vertebrates. However, it was also a period of major marine extinctions coinciding with marked changes in climate. The cause of these changes remains unknown, and it is therefore instructive to explore systematically how the Devonian climate responds to changes in boundary conditions. Here we use coupled climate model simulations to investigate separately the influence of changes in continental configuration, vegetation cover, carbon dioxide (CO2) concentrations, the solar constant, and orbital parameters on the Devonian climate. The biogeophysical effect of changes in vegetation cover is small, and the cooling due to continental drift is offset by the increasing solar constant. Variations of orbital parameters affect the Devonian climate, with the warmest climate states at high obliquity and high eccentricity. The prevailing mode of decadal to centennial climate variability relates to temperature fluctuations in high northern latitudes which are mediated by coupled oscillations involving sea ice cover, ocean convection, and a regional overturning circulation. The temperature evolution during the Devonian is dominated by the strong decrease in atmospheric CO2. Albedo changes due to increasing vegetation cover cannot explain the temperature rise found in Late Devonian proxy data. Finally, simulated temperatures are significantly lower than estimates based on oxygen isotope ratios, suggesting a lower d18O ratio of Devonian seawater. ©2019. The Authors.
  • Item
    Cyclostratigraphic studies of sediments from Lake Van (Turkey) based on their uranium contents obtained from downhole logging and paleoclimatic implications
    (Berlin ; Heidelberg : Springer, 2015) Baumgarten, H.; Wonik, T.
    A deep drilling campaign was performed at Lake Van (Turkey) to enhance the understanding of the paleoenvironmental conditions of the Middle East. Cores were collected, and the sediments are mainly composed of clayey silts and tephra deposits. Spectral gamma ray data were acquired (0–210 m below lake floor), and the uranium data were used for cyclostratigraphic studies to estimate the sedimentation rates and the time of deposition. Detection and analysis of climate cycles require continuous sedimentation and cannot be applied to these sediments which include numerous tephra layers. Therefore, these layers were removed, and a synthetic log was created (cumulative thickness of the tephra ≈50 m; remaining lacustrine sediments ≈160 m). High amplitudes were detected and correlated to Milanković cycles. Their evolution was analyzed using the sliding window technique. The sedimentation rates varied from 22 to 33 cm/ka in the upper section. The sediments between the lake floor and a depth of 210 m were deposited over a period of 587 ka. Our results agree with core interpretations (e.g., correlation of total organic carbon with marine isotope stages) which suggest a time span of deposition of 600 ka. High-frequency cycles were detected and correlated with interstadials from the North Greenland δ18O record for the past 75 ka. The two datasets agreed closely. We conclude that climate signals, even on sub-Milanković scale, are imprinted in uranium of these sediments, and cyclostratigraphic methods are applicable if event layers are subtracted from the sediment record.