Search Results

Now showing 1 - 2 of 2
  • Item
    Simultaneous observations of a Mesospheric Inversion Layer and turbulence during the ECOMA-2010 rocket campaign
    (Göttingen : Copernicus, 2013) Szewczyk, A.; Strelnikov, B.; Rapp, M.; Strelnikova, I.; Baumgarten, G.; Kaifler, N.; Dunker, T.; Hoppe, U.-P.
    From 19 November to 19 December 2010 the fourth and final ECOMA rocket campaign was conducted at Andøya Rocket Range (69 N, 16 E) in northern Norway. We present and discuss measurement results obtained during the last rocket launch labelled ECOMA09 when simultaneous and true common volume in situ measurements of temperature and turbulence supported by ground-based lidar observations reveal two Mesospheric Inversion Layers (MIL) at heights between 71 and 73 km and between 86 and 89 km. Strong turbulence was measured in the region of the upper inversion layer, with the turbulent energy dissipation rates maximising at 2 W kg-1. This upper MIL was observed by the ALOMAR Weber Na lidar over the period of several hours. The spatial extension of this MIL as observed by the MLS instrument onboard AURA satellite was found to be more than two thousand kilometres. Our analysis suggests that both observed MILs could possibly have been produced by neutral air turbulence.
  • Item
    Observing Mesospheric Turbulence with Specular Meteor Radars: a novel Method for Estimating Second-Order Statistics of Wind Velocity
    (Malden, Mass. : American Geophysical Union, 2019) Vierinen, J.; Chau, J.L.; Charuvil, H.; Urco, J.M.; Clahsen, M.; Avsarkisov, V.; Marino, R.; Volz, R.
    There are few observational techniques for measuring the distribution of kinetic energy within the mesosphere with a wide range of spatial and temporal scales. This study describes a method for estimating the three-dimensional mesospheric wind field correlation function from specular meteor trail echoes. Each radar echo provides a measurement of a one-dimensional projection of the wind velocity vector at a randomly sampled point in space and time. The method relies on using pairs of such measurements to estimate the correlation function of the wind with different spatial and temporal lags. The method is demonstrated using a multistatic meteor radar data set that includes ≈105 meteor echoes observed during a 24-hr time period. The new method is found to be in good agreement with the well-established technique for estimating horizontal mean winds. High-resolution correlation functions with temporal, horizontal, and vertical lags are also estimated from the data. The temporal correlation function is used to retrieve the kinetic energy spectrum, which includes the semidiurnal mode and a 3-hr period wave. The horizontal and vertical correlation functions of the wind are then used to derive second-order structure functions, which are found to be compatible with the Kolmogorov prediction for spectral distribution of kinetic energy in the turbulent inertial range. The presented method can be used to extend the capabilities of specular meteor radars. It is relatively flexible and has a multitude of applications beyond what has been shown in this study.