Search Results

Now showing 1 - 2 of 2
  • Item
    Near-ubiquity of ice-edge blooms in the Arctic
    (Göttingen : Copernicus GmbH, 2011) Perrette, M.; Yool, A.; Quartly, G.D.; Popova, E.E.
    Ice-edge blooms are significant features of Arctic primary production, yet have received relatively little attention. Here we combine satellite ocean colour and sea-ice data in a pan-Arctic study. Ice-edge blooms occur in all seasonally ice-covered areas and from spring to late summer, being observed in 77-89% of locations for which adequate data exist, and usually peaking within 20 days of ice retreat. They sometimes form long belts along the ice-edge (greater than 100 km), although smaller structures were also found. The bloom peak is on average more than 1 mg m-3, with major blooms more than 10 mg m -3, and is usually located close to the ice-edge, though not always. Some propagate behind the receding ice-edge over hundreds of kilometres and over several months, while others remain stationary. The strong connection between ice retreat and productivity suggests that the ongoing changes in Arctic sea-ice may have a significant impact on higher trophic levels and local fish stocks.
  • Item
    A Pronounced Spike in Ocean Productivity Triggered by the Chicxulub Impact
    (Hoboken, NJ : Wiley, 2021) Brugger, Julia; Feulner, Georg; Hofmann, Matthias; Petri, Stefan
    There is increasing evidence linking the mass-extinction event at the Cretaceous-Paleogene boundary to an asteroid impact near Chicxulub, Mexico. Here we use model simulations to explore the combined effect of sulfate aerosols, carbon dioxide and dust from the impact on the oceans and the marine biosphere in the immediate aftermath of the impact. We find a strong temperature decrease, a brief algal bloom caused by nutrients from both the deep ocean and the projectile, and moderate surface ocean acidification. Comparing the modeled longer-term post-impact warming and changes in carbon isotopes with empirical evidence points to a substantial release of carbon from the terrestrial biosphere. Overall, our results shed light on the decades to centuries after the Chicxulub impact which are difficult to resolve with proxy data.