Search Results

Now showing 1 - 2 of 2
  • Item
    Lidar-Radiometer Inversion Code (LIRIC) for the retrieval of vertical aerosol properties from combined lidar/radiometer data: Development and distribution in EARLINET
    (München : European Geopyhsical Union, 2016) Chaikovsky, Anatoli; Dubovik, Oleg; Holben, Brent; Bril, Andrey; Goloub, Philippe; Tanré, Didier; Pappalardo, Gelsomina; Wandinger, Ulla; Chaikovskaya, Ludmila; Denisov, Sergey; Grudo, Jan; Lopatin, Anton; Karol, Yana; Lapyonok, Tatsiana; Amiridis, Vassilis; Ansmann, Albert; Apituley, Arnoud; Allados-Arboledas, Lucas; Binietoglou, Ioannis; Boselli, Antonella; D'Amico, Giuseppe; Freudenthaler, Volker; Giles, David; Granados-Muñoz, María José; Kokkalis, Panayotis; Nicolae, Doina; Oshchepkov, Sergey; Papayannis, Alex; Perrone, Maria Rita; Pietruczuk, Alexander; Rocadenbosch, Francesc; Sicard, Michaël; Slutsker, Ilya; Talianu, Camelia; De Tomasi, Ferdinando; Tsekeri, Alexandra; Wagner, Janet; Wang, Xuan
    This paper presents a detailed description of LIRIC (LIdar-Radiometer Inversion Code) algorithm for simultaneous processing of coincident lidar and radiometric (sun photometric) observations for the retrieval of the aerosol concentration vertical profiles. As the lidar/radiometric input data we use measurements from European Aerosol Research Lidar Network (EARLINET) lidars and collocated sun-photometers of Aerosol Robotic Network (AERONET). The LIRIC data processing provides sequential inversion of the combined lidar and radiometric data. The algorithm starts with the estimations of column-integrated aerosol parameters from radiometric measurements followed by the retrieval of height dependent concentrations of fine and coarse aerosols from lidar signals using integrated column characteristics of aerosol layer as a priori constraints. The use of polarized lidar observations allows us to discriminate between spherical and non-spherical particles of the coarse aerosol mode. The LIRIC software package was implemented and tested at a number of EARLINET stations. Intercomparison of the LIRIC-based aerosol retrievals was performed for the observations by seven EARLINET lidars in Leipzig, Germany on 25 May 2009. We found close agreement between the aerosol parameters derived from different lidars that supports high robustness of the LIRIC algorithm. The sensitivity of the retrieval results to the possible reduction of the available observation data is also discussed.
  • Item
    Intercomparison of middle-atmospheric wind in observations and models
    (Katlenburg-Lindau : Copernicus, 2018-4-6) Rüfenacht, Rolf; Baumgarten, Gerd; Hildebrand, Jens; Schranz, Franziska; Matthias, Vivien; Stober, Gunter; Lübken, Franz-Josef; Kämpfer, Niklaus
    Wind profile information throughout the entire upper stratosphere and lower mesosphere (USLM) is important for the understanding of atmospheric dynamics but became available only recently, thanks to developments in remote sensing techniques and modelling approaches. However, as wind measurements from these altitudes are rare, such products have generally not yet been validated with (other) observations. This paper presents the first long-term intercomparison of wind observations in the USLM by co-located microwave radiometer and lidar instruments at Andenes, Norway (69.3∘ N, 16.0∘ E). Good correspondence has been found at all altitudes for both horizontal wind components for nighttime as well as daylight conditions. Biases are mostly within the random errors and do not exceed 5–10 m s−1, which is less than 10 % of the typically encountered wind speeds. Moreover, comparisons of the observations with the major reanalyses and models covering this altitude range are shown, in particular with the recently released ERA5, ECMWF's first reanalysis to cover the whole USLM region. The agreement between models and observations is very good in general, but temporally limited occurrences of pronounced discrepancies (up to 40 m s−1) exist. In the article's Appendix the possibility of obtaining nighttime wind information about the mesopause region by means of microwave radiometry is investigated.