Search Results

Now showing 1 - 4 of 4
  • Item
    Evaluation of the shortwave cloud radiative effect over the ocean by use of ship and satellite observations
    (München : European Geopyhsical Union, 2012) Hanschmann, T.; Deneke, H.; Roebeling, R.; Macke, A.
    In this study the shortwave cloud radiative effect (SWCRE) over ocean calculated by the ECHAM 5 climate model is evaluated for the cloud property input derived from ship based measurements and satellite based estimates and compared to ship based radiation measurements. The ship observations yield cloud fraction, liquid water path from a microwave radiometer, cloud bottom height as well as temperature and humidity profiles from radiosonde ascents. Level-2 products of the Satellite Application Facility on Climate Monitoring (CM~SAF) from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) have been used to characterize clouds. Within a closure study six different experiments have been defined to find the optimal set of measurements to calculate downward shortwave radiation (DSR) and the SWCRE from the model, and their results have been evaluated under seven different synoptic situations. Four of these experiments are defined to investigate the advantage of including the satellite-based cloud droplet effective radius as additional cloud property. The modeled SWCRE based on satellite retrieved cloud properties has a comparable accuracy to the modeled SWCRE based on ship data. For several cases, an improvement through introducing the satellite-based estimate of effective radius as additional information to the ship based data was found. Due to their different measuring characteristics, however, each dataset shows best results for different atmospheric conditions.
  • Item
    Shortwave surface radiation network for observing small-scale cloud inhomogeneity fields
    (München : European Geopyhsical Union, 2016) Madhavan, Bomidi Lakshmi; Kalisch, John; Macke, Andreas
    As part of the High Definition Clouds and Precipitation for advancing Climate Prediction Observational Prototype Experiment (HOPE), a high-density network of 99 silicon photodiode pyranometers was set up around Jülich (10 km × 12 km area) from April to July 2013 to capture the small-scale variability of cloud-induced radiation fields at the surface. In this paper, we provide the details of this unique setup of the pyranometer network, data processing, quality control, and uncertainty assessment under variable conditions. Some exemplary days with clear, broken cloudy, and overcast skies were explored to assess the spatiotemporal observations from the network along with other collocated radiation and sky imager measurements available during the HOPE period.
  • Item
    Climatological and radiative properties of midlatitude cirrus clouds derived by automatic evaluation of lidar measurements
    (München : European Geopyhsical Union, 2016) Kienast-Sjögren, Erika; Rolf, Christian; Seifert, Patric; Krieger, Ulrich K.; Luo, Bei P.; Krämer, Martina; Peter, Thomas
    Cirrus, i.e., high, thin clouds that are fully glaciated, play an important role in the Earth's radiation budget as they interact with both long- and shortwave radiation and affect the water vapor budget of the upper troposphere and stratosphere. Here, we present a climatology of midlatitude cirrus clouds measured with the same type of ground-based lidar at three midlatitude research stations: at the Swiss high alpine Jungfraujoch station (3580 m a.s.l.), in Zürich (Switzerland, 510 m a.s.l.), and in Jülich (Germany, 100 m a.s.l.). The analysis is based on 13 000 h of measurements from 2010 to 2014. To automatically evaluate this extensive data set, we have developed the Fast LIdar Cirrus Algorithm (FLICA), which combines a pixel-based cloud-detection scheme with the classic lidar evaluation techniques. We find mean cirrus optical depths of 0.12 on Jungfraujoch and of 0.14 and 0.17 in Zürich and Jülich, respectively. Above Jungfraujoch, subvisible cirrus clouds (τ < 0.03) have been observed during 6 % of the observation time, whereas above Zürich and Jülich fewer clouds of that type were observed. Cirrus have been observed up to altitudes of 14.4 km a.s.l. above Jungfraujoch, whereas they have only been observed to about 1 km lower at the other stations. These features highlight the advantage of the high-altitude station Jungfraujoch, which is often in the free troposphere above the polluted boundary layer, thus enabling lidar measurements of thinner and higher clouds. In addition, the measurements suggest a change in cloud morphology at Jungfraujoch above ∼ 13 km, possibly because high particle number densities form in the observed cirrus clouds, when many ice crystals nucleate in the high supersaturations following rapid uplifts in lee waves above mountainous terrain. The retrieved optical properties are used as input for a radiative transfer model to estimate the net cloud radiative forcing, CRFNET, for the analyzed cirrus clouds. All cirrus detected here have a positive CRFNET. This confirms that these thin, high cirrus have a warming effect on the Earth's climate, whereas cooling clouds typically have cloud edges too low in altitude to satisfy the FLICA criterion of temperatures below −38 °C. We find CRFNET = 0.9 W m−2 for Jungfraujoch and 1.0 W m−2 (1.7 W m−2) for Zürich (Jülich). Further, we calculate that subvisible cirrus (τ < 0.03) contribute about 5 %, thin cirrus (0.03 < τ < 0.3) about 45 %, and opaque cirrus (0.3 < τ) about 50 % of the total cirrus radiative forcing.
  • Item
    Climatic response to anthropogenic sulphate aerosols versus well-mixed greenhouse gases from 1850 to 2000 AD in CLIMBER-2
    (Abingdon : Taylor and Francis Ltd., 2008) Bauer, E.; Petoukhov, V.; Ganopolski, A.; Eliseev, A.V.
    The Earth system model CLIMBER-2 is extended by a scheme for calculating the climatic response to anthropogenic sulphur dioxide emissions. The scheme calculates the direct radiative forcing, the first indirect cloud albedo effect, and the second indirect cloud lifetime effect induced by geographically resolved sulphate aerosol burden. The simulated anthropogenic sulphate aerosol burden in the year 2000 amounts to 0.47 TgS. The best guesses for the radiative forcing due to the direct effect are -0.4 W m-2 and for the decrease in short-wave radiation due to all aerosol effects -0.8 W m-2. The simulated global warming by 1 K from 1850 to 2000 caused by anthropogenic greenhouse gases reduces to 0.6 K when the sulphate aerosol effects are included. The model's hydrological sensitivity of 4%/K is decreased by the second indirect effect to 0.8%/K. The quality of the geographically distributed climatic response to the historic emissions of sulphur dioxide and greenhouse gases makes the extended model relevant to computational efficient investigations of future climate change scenarios.