Search Results

Now showing 1 - 6 of 6
  • Item
    Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks
    (London : Nature Publishing Group, 2017) Zemp, D.C.; Schleussner, C.-F.; Barbosa, H.M.J.; Hirota, M.; Montade, V.; Sampaio, G.; Staal, A.; Wang-Erlandsson, L.; Rammig, A.
    Reduced rainfall increases the risk of forest dieback, while in return forest loss might intensify regional droughts. The consequences of this vegetation-atmosphere feedback for the stability of the Amazon forest are still unclear. Here we show that the risk of self-amplified Amazon forest loss increases nonlinearly with dry-season intensification. We apply a novel complex-network approach, in which Amazon forest patches are linked by observation-based atmospheric water fluxes. Our results suggest that the risk of self-amplified forest loss is reduced with increasing heterogeneity in the response of forest patches to reduced rainfall. Under dry-season Amazonian rainfall reductions, comparable to Last Glacial Maximum conditions, additional forest loss due to self-amplified effects occurs in 10-13% of the Amazon basin. Although our findings do not indicate that the projected rainfall changes for the end of the twenty-first century will lead to complete Amazon dieback, they suggest that frequent extreme drought events have the potential to destabilize large parts of the Amazon forest.
  • Item
    Potential effects of climate change on inundation patterns in the Amazon Basin
    (Chichester : John Wiley and Sons Ltd, 2013) Langerwisch, F.; Rost, S.; Gerten, D.; Poulter, B.; Rammig, A.; Cramer, W.
    Floodplain forests, namely the Várzea and Igapó, cover an area of more than 97 000 km2. A key factor for their function and diversity is annual flooding. Increasing air temperature and higher precipitation variability caused by climate change are expected to shift the flooding regime during this century, and thereby impact floodplain ecosystems, their biodiversity and riverine ecosystem services. To assess the effects of climate change on the flooding regime, we use the Dynamic Global Vegetation and Hydrology Model LPJmL, enhanced by a scheme that realistically simulates monthly flooded area. Simulation results of discharge and inundation under contemporary conditions compare well against site-level measurements and observations. The changes of calculated inundation duration and area under climate change projections from 24 IPCC AR4 climate models differ regionally towards the end of the 21st century. In all, 70% of the 24 climate projections agree on an increase of flooded area in about one third of the basin. Inundation duration increases dramatically by on average three months in western and around one month in eastern Amazonia. The time of high- and low-water peak shifts by up to three months. Additionally, we find a decrease in the number of extremely dry years and in the probability of the occurrence of three consecutive extremely dry years. The total number of extremely wet years does not change drastically but the probability of three consecutive extremely wet years decreases by up to 30% in the east and increases by up to 25% in the west. These changes implicate significant shifts in regional vegetation and climate, and will dramatically alter carbon and water cycles.
  • Item
    Global root zone storage capacity from satellite-based evaporation
    (Göttingen : Copernicus GmbH, 2016) Wang-Erlandsson, L.; Bastiaanssen, W.G.M.; Gao, H.; Jägermeyr, J.; Senay, G.B.; Van Dijk, A.I.J.M.; Guerschman, J.P.; Keys, P.W.; Gordon, L.J.; Savenije, H.H.G.
  • Item
    Implementing the nitrogen cycle into the dynamic global vegetation, hydrology, and crop growth model LPJmL (version 5.0)
    (Katlenburg-Lindau : Copernicus, 2018) von Bloh, Werner; Schaphoff, Sibyll; Müller, Christoph; Rolinski, Susanne; Waha, Katharina; Zaehle, Sönke
    The well-established dynamical global vegetation, hydrology, and crop growth model LPJmL is extended with a terrestrial nitrogen cycle to account for nutrient limitations. In particular, processes of soil nitrogen dynamics, plant uptake, nitrogen allocation, response of photosynthesis and maintenance respiration to varying nitrogen concentrations in plant organs, and agricultural nitrogen management are included in the model. All new model features are described in full detail and the results of a global simulation of the historic past (1901-2009) are presented for evaluation of the model performance. We find that the implementation of nitrogen limitation significantly improves the simulation of global patterns of crop productivity. Regional differences in crop productivity, which had to be calibrated via a scaling of the maximum leaf area index, can now largely be reproduced by the model, except for regions where fertilizer inputs and climate conditions are not the yield-limiting factors. Furthermore, it can be shown that land use has a strong influence on nitrogen losses, increasing leaching by 93 %.
  • Item
    Wirkungen des globalen Wandels auf den Wasserkreislauf im Elbegebiet - Ergebnisse und Konsequenzen : GLOWA-ELBE III Verbundvorhaben ; Schlussbericht
    (Hannover : Technische Informationsbibliothek (TIB), 2011) Wechsung, F.; Gerstengarbe, F.W.; Conradt, T.; Gräfe, P.; Hattermann, F.; Hauf, Y.; Lüttger, A.; Werner, P.C.; Walter, C.
    [no abstract available]
  • Item
    Metastability for discontinuous dynamical systems under Lévy noise: Case study on Amazonian Vegetation
    (London : Nature Publishing Group, 2017) Serdukova, L.; Zheng, Y.; Duan, J.; Kurths, J.
    For the tipping elements in the Earth's climate system, the most important issue to address is how stable is the desirable state against random perturbations. Extreme biotic and climatic events pose severe hazards to tropical rainforests. Their local effects are extremely stochastic and difficult to measure. Moreover, the direction and intensity of the response of forest trees to such perturbations are unknown, especially given the lack of efficient dynamical vegetation models to evaluate forest tree cover changes over time. In this study, we consider randomness in the mathematical modelling of forest trees by incorporating uncertainty through a stochastic differential equation. According to field-based evidence, the interactions between fires and droughts are a more direct mechanism that may describe sudden forest degradation in the south-eastern Amazon. In modeling the Amazonian vegetation system, we include symmetric α-stable Lévy perturbations. We report results of stability analysis of the metastable fertile forest state. We conclude that even a very slight threat to the forest state stability represents Ĺevy noise with large jumps of low intensity, that can be interpreted as a fire occurring in a non-drought year. During years of severe drought, high-intensity fires significantly accelerate the transition between a forest and savanna state.