Search Results

Now showing 1 - 10 of 27
  • Item
    Surface Plasmon Resonance Sensitivity Enhancement Based on Protonated Polyaniline Films Doped by Aluminum Nitrate
    (Basel : MDPI, 2022) Al-Bataineh, Qais M.; Shpacovitch, Victoria; Sadiq, Diyar; Telfah, Ahmad; Hergenröder, Roland
    Complex composite films based on polyaniline (PANI) doped hydrochloric acid (HCl) incorporated with aluminum nitrate (Al(NO3)3) on Au-layer were designed and synthesized as a surface plasmon resonance (SPR) sensing device. The physicochemical properties of (PANI-HCl)/Al(NO3)3 complex composite films were studied for various Al(NO3)3 concentrations (0, 2, 4, 8, 16, and 32 wt.%). The refractive index of the (PANI-HCl)/Al(NO3)3 complex composite films increased continuously as Al(NO3)3 concentrations increased. The electrical conductivity values increased from 5.10 µS/cm to 10.00 µS/cm as Al(NO3)3 concentration increased to 32 wt.%. The sensitivity of the SPR sensing device was investigated using a theoretical approach and experimental measurements. The theoretical system of SPR measurement confirmed that increasing Al(NO3)3 in (PANI-HCl)/Al(NO3)3 complex composite films enhanced the sensitivity from about 114.5 [Deg/RIU] for Au-layer to 159.0 [Deg/RIU] for Au-((PANI-HCl)/Al(NO3)3 (32 wt.%)). In addition, the signal-to-noise ratio for Au-layer was 3.95, which increased after coating by (PANI-HCl)/Al(NO3)3 (32 wt.%) complex composite layer to 8.82. Finally, we conclude that coating Au-layer by (PANI-HCl)/Al(NO3)3 complex composite films enhances the sensitivity of the SPR sensing device.
  • Item
    The bruchpilot cytomatrix determines the size of the readily releasable pool of synaptic vesicles
    (London : Nature Publishing Group, 2013) Matkovic, Tanja; Siebert, Matthias; Knoche, Elena; Depner, Harald; Mertel, Sara; Owald, David; Schmidt, Manuela; Thomas, Ulrich; Sickmann, Albert; Kamin, Dirk; Hell, Stefan W.; BĂ¼rger, Jörg; Hollmann, Christina; Mielke, Thorsten; Wichmann, Carolin; Sigrist, Stephan J.
    Synaptic vesicles (SVs) fuse at a specialized membrane domain called the active zone (AZ), covered by a conserved cytomatrix. How exactly cytomatrix components intersect with SV release remains insufficiently understood. We showed previously that loss of the Drosophila melanogaster ELKS family protein Bruchpilot (BRP) eliminates the cytomatrix (T bar) and declusters Ca2+ channels. In this paper, we explored additional functions of the cytomatrix, starting with the biochemical identification of two BRP isoforms. Both isoforms alternated in a circular array and were important for proper T-bar formation. Basal transmission was decreased in isoform-specific mutants, which we attributed to a reduction in the size of the readily releasable pool (RRP) of SVs. We also found a corresponding reduction in the number of SVs docked close to the remaining cytomatrix. We propose that the macromolecular architecture created by the alternating pattern of the BRP isoforms determines the number of Ca2+ channel-coupled SV release slots available per AZ and thereby sets the size of the RRP.
  • Item
    Gli protein activity is controlled by multisite phosphorylation in vertebrate hedgehog signaling
    (Amsterdam : Elsevier, 2013) Niewiadomski, Pawel; Kong, Jennifer H.; Ahrends, Robert; Ma, Yan; Humke, Eric W.; Khan, Sohini; Teruel, Mary N.; Novitch, Bennett G.; Rohatgi, Rajat
    Gli proteins are transcriptional effectors of the Hedgehog (Hh) pathway in both normal development and cancer. We describe a program of multisite phosphorylation that regulates the conversion of Gli proteins into transcriptional activators. In the absence of Hh ligands, Gli activity is restrained by the direct phosphorylation of six conserved serine residues by protein kinase A (PKA), a master negative regulator of the Hh pathway. Activation of signaling leads to a global remodeling of the Gli phosphorylation landscape: the PKA target sites become dephosphorylated, while a second cluster of sites undergoes phosphorylation. The pattern of Gli phosphorylation can regulate Gli transcriptional activity in a graded fashion, suggesting a phosphorylation-based mechanism for how a gradient of Hh signaling in a morphogenetic field can be converted into a gradient of transcriptional activity.
  • Item
    Current strategies and findings in clinically relevant post-translational modification-specific proteomics
    (Milton Park : Taylor & Francis, 2015) Pagel, Oliver; Loroch, Stefan; Sickmann, Albert; Zahedi, René P.
    Mass spectrometry-based proteomics has considerably extended our knowledge about the occurrence and dynamics of protein post-translational modifications (PTMs). So far, quantitative proteomics has been mainly used to study PTM regulation in cell culture models, providing new insights into the role of aberrant PTM patterns in human disease. However, continuous technological and methodical developments have paved the way for an increasing number of PTM-specific proteomic studies using clinical samples, often limited in sample amount. Thus, quantitative proteomics holds a great potential to discover, validate and accurately quantify biomarkers in body fluids and primary tissues. A major effort will be to improve the complete integration of robust but sensitive proteomics technology to clinical environments. Here, we discuss PTMs that are relevant for clinical research, with a focus on phosphorylation, glycosylation and proteolytic cleavage; furthermore, we give an overview on the current developments and novel findings in mass spectrometry-based PTM research.
  • Item
    LUBAC assembles a ubiquitin signaling platform at mitochondria for signal amplification and transport of NF-κB to the nucleus
    (Hoboken, NJ [u.a.] : Wiley, 2022) Wu, Zhixiao; Berlemann, Lena A.; Bader, Verian; Sehr, Dominik A.; Dawin, Eva; Covallero, Alberto; Meschede, Jens; Angersbach, Lena; Showkat, Cathrin; Michaelis, Jonas B.; MĂ¼nch, Christian; Rieger, Bettina; Namgaladze, Dmitry; Herrera, Maria Georgina; Fiesel, Fabienne C.; Springer, Wolfdieter; Mendes, Marta; Stepien, Jennifer; Barkovits, Katalin; Marcus, Katrin; Sickmann, Albert; Dittmar, Gunnar; Busch, Karin B.; Riedel, Dietmar; Brini, Marisa; Tatzelt, Jörg; Cali, Tito; Winklhofer, Konstanze F.
    Mitochondria are increasingly recognized as cellular hubs to orchestrate signaling pathways that regulate metabolism, redox homeostasis, and cell fate decisions. Recent research revealed a role of mitochondria also in innate immune signaling; however, the mechanisms of how mitochondria affect signal transduction are poorly understood. Here, we show that the NF-κB pathway activated by TNF employs mitochondria as a platform for signal amplification and shuttling of activated NF-κB to the nucleus. TNF treatment induces the recruitment of HOIP, the catalytic component of the linear ubiquitin chain assembly complex (LUBAC), and its substrate NEMO to the outer mitochondrial membrane, where M1- and K63-linked ubiquitin chains are generated. NF-κB is locally activated and transported to the nucleus by mitochondria, leading to an increase in mitochondria-nucleus contact sites in a HOIP-dependent manner. Notably, TNF-induced stabilization of the mitochondrial kinase PINK1 furthermore contributes to signal amplification by antagonizing the M1-ubiquitin-specific deubiquitinase OTULIN. Overall, our study reveals a role for mitochondria in amplifying TNF-mediated NF-κB activation, both serving as a signaling platform, as well as a transport mode for activated NF-κB to the nuclear.
  • Item
    During early stages of cancer, neutrophils initiate anti-tumor immune responses in tumor-draining lymph nodes
    (Maryland Heights, MO : Cell Press, 2022) Pylaeva, Ekaterina; Korschunow, Georg; Spyra, Ilona; Bordbari, Sharareh; Siakaeva, Elena; Ozel, Irem; Domnich, Maksim; Squire, Anthony; Hasenberg, Anja; Thangavelu, Kruthika; Hussain, Timon; Goetz, Moritz; Lang, Karl S; Gunzer, Matthias; Hansen, Wiebke; Buer, Jan; Bankfalvi, Agnes; Lang, Stephan; Jablonska, Jadwiga
    Tumor-draining lymph nodes (LNs) play a crucial role during cancer spread and in initiation of anti-cancer adaptive immunity. Neutrophils form a substantial population of cells in LNs with poorly understood functions. Here, we demonstrate that, during head and neck cancer (HNC) progression, tumor-associated neutrophils transmigrate to LNs and shape anti-tumor responses in a stage-dependent manner. In metastasis-free stages (N0), neutrophils develop an antigen-presenting phenotype (HLA-DR+CD80+CD86+ICAM1+PD-L1-) and stimulate T cells (CD27+Ki67highPD-1-). LN metastases release GM-CSF and via STAT3 trigger development of PD-L1+ immunosuppressive neutrophils, which repress T cell responses. The accumulation of neutrophils in T cell-rich zones of LNs in N0 constitutes a positive predictor for 5-year survival, while increased numbers of neutrophils in LNs of N1-3 stages predict poor prognosis in HNC. These results suggest a dual role of neutrophils as essential regulators of anti-cancer immunity in LNs and argue for approaches fostering immunostimulatory activity of these cells during cancer therapy.
  • Item
    Identification of cleavage sites and substrate proteins for two mitochondrial intermediate peptidases in Arabidopsis thaliana
    (Oxford : Oxford University Press, 2015) Carrie, Chris; Venne, A. Saskia; Zahedi, RenĂ© P.; Soll, JĂ¼rgen
    Most mitochondrial proteins contain an N-terminal targeting signal that is removed by specific proteases following import. In plant mitochondria, only mitochondrial processing peptidase (MPP) has been characterized to date. Therefore, we sought to determine the substrates and cleavage sites of the Arabidopsis thaliana homologues to the yeast Icp55 and Oct1 proteins, using the newly developed ChaFRADIC method for N-terminal protein sequencing. We identified 88 and seven putative substrates for Arabidopsis ICP55 and OCT1, respectively. It was determined that the Arabidopsis ICP55 contains an almost identical cleavage site to that of Icp55 from yeast. However, it can also remove a far greater range of amino acids. The OCT1 substrates from Arabidopsis displayed no consensus cleavage motif, and do not contain the classical –10R motif identified in other eukaryotes. Arabidopsis OCT1 can also cleave presequences independently, without the prior cleavage of MPP. It was concluded that while both OCT1 and ICP55 were probably acquired early on in the evolution of mitochondria, their substrate profiles and cleavage sites have either remained very similar or diverged completely.
  • Item
    Identification of new reference genes for the normalisation of canine osteoarthritic joint tissue transcripts from microarray data
    (London : BioMed Central, 2007) Maccoux, Lindsey J.; Clements, Dylan N.; Salway, Fiona; Day, Philip J.R.
    Background: Real-time reverse transcriptase quantitative polymerase chain reaction (real-time RTqPCR) is the most accurate measure of gene expression in biological systems. The comparison of different samples requires the transformation of data through a process called normalisation. Reference or housekeeping genes are candidate genes which are selected on the basis of constitutive expression across samples, and allow the quantification of changes in gene expression. At present, no reference gene has been identified for any organism which is universally optimal for use across different tissue types or disease situations. We used microarray data to identify new reference genes generated from total RNA isolated from normal and osteoarthritic canine articular tissues (bone, ligament, cartilage, synovium and fat). RTqPCR assays were designed and applied to each different articular tissue. Reference gene expression stability and ranking was compared using three different mathematical algorithms. Results: Twelve new potential reference genes were identified from microarray data. One gene (mitochondrial ribosomal protein S7 [MRPS7]) was stably expressed in all five of the articular tissues evaluated. One gene HIRA interacting protein 5 isoform 2 [HIRP5]) was stably expressed in four of the tissues evaluated. A commonly used reference gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was not stably expressed in any of the tissues evaluated. Most consistent agreement between rank ordering of reference genes was observed between Bestkeeper© and geNorm, although each method tended to agree on the identity of the most stably expressed genes and the least stably expressed genes for each tissue. New reference genes identified using microarray data normalised in a conventional manner were more stable than those identified by microarray data normalised by using a real-time RT-qPCR methodology. Conclusion: Microarray data normalised by a conventional manner can be filtered using a simple stepwise procedure to identify new reference genes, some of which will demonstrate good measures of stability. Mitochondrial ribosomal protein S7 is a new reference gene worthy of investigation in other canine tissues and diseases. Different methods of reference gene stability assessment will generally agree on the most and least stably expressed genes, when co-regulation is not present.
  • Item
    The Caveolin-3 G56S sequence variant of unknown significance: Muscle biopsy findings and functional cell biological analysis
    (Hoboken, NJ : Wiley, 2016) Brauers, Eva; Roos, Andreas; Kollipara, Laxmikanth; Zahedi, René P.; Beckmann, Alf; Mohanadas, Nilane; Bauer, Hartmut; Häusler, Martin; Thoma, Stéphanie; Kress, Wolfram; Senderek, Jan; Weis, Joachim
    Purpose: In the era of next-generation sequencing, we are increasingly confronted with se- quence variants of unknown significance. This phenomenon is also known for variations in Caveolin-3 and can complicate the molecular diagnosis of the disease. Here, we aimed to study the ambiguous character of the G56S Caveolin-3 variant. Experimental design: A comprehensive approach combining genetic and morphological stud- ies of muscle derived from carriers of the G56S Caveolin-3 variant were carried out and linked to biochemical assays (including phosphoblot studies and proteome profiling) and morphological investigations of cultured myoblasts. Results: Muscles showed moderate chronic myopathic changes in all carriers of the variant. Myogenic RCMH cells expressing the G56S Caveolin-3 protein presented irregular Caveolin-3 deposits within the Golgi in addition to a regular localization of the protein to the plasma mem- brane. This result was associated with abnormal findings on the ultra-structural level. Phos- phoblot studies revealed that G56S affects EGFR-signaling. Proteomic profiling demonstrated alterations in levels of physiologically relevant proteins which are indicative for antagonization of G56S Caveolin-3 expression. Remarkably, some proteomic alterations were enhanced by osmotic/mechanical stress. Conclusions and clinical relevance: Our studies suggest that G56S might influence the mani- festation of myopathic changes upon the presence of additional cellular stress burden. Results of our studies moreover improve the current understanding of (genetic) causes of myopathic disorders classified as caveolinopathies.
  • Item
    A Homozygous PPP1R21 Splice Variant Associated with Severe Developmental Delay, Absence of Speech, and Muscle Weakness Leads to Activated Proteasome Function
    (Totowa, NJ : Humana Press, 2023) Hentschel, Andreas; Meyer, Nancy; Kohlschmidt, Nicolai; GroĂŸ, Claudia; Sickmann, Albert; Schara-Schmidt, Ulrike; Förster, Fabian; Töpf, Ana; Christiansen, Jon; Horvath, Rita; Vorgerd, Matthias; Thompson, Rachel; Polaparapu, Kiran; LochmĂ¼ller, Hanns; Preusse, Corinna; Hannappel, Luis; Schänzer, Anne; GrĂ¼neboom, Anika; GangfuĂŸ, Andrea; Roos, Andreas
    PPP1R21 acts as a co-factor for protein phosphatase 1 (PP1), an important serine/threonine phosphatase known to be essential for cell division, control of glycogen metabolism, protein synthesis, and muscle contractility. Bi-allelic pathogenic variants in PPP1R21 were linked to a neurodevelopmental disorder with hypotonia, facial dysmorphism, and brain abnormalities (NEDHFBA) with pediatric onset. Functional studies unraveled impaired vesicular transport as being part of PPP1R21-related pathomechanism. To decipher further the pathophysiological processes leading to the clinical manifestation of NEDHFBA, we investigated the proteomic signature of fibroblasts derived from the first NEDHFBA patient harboring a splice-site mutation in PPP1R21 and presenting with a milder phenotype. Proteomic findings and further functional studies demonstrate a profound activation of the ubiquitin–proteasome system with presence of protein aggregates and impact on cellular fitness and moreover suggest a cross-link between activation of the proteolytic system and cytoskeletal architecture (including filopodia) as exemplified on paradigmatic proteins including actin, thus extending the pathophysiological spectrum of the disease. In addition, the proteomic signature of PPP1R21-mutant fibroblasts displayed a dysregulation of a variety of proteins of neurological relevance. This includes increase proteins which might act toward antagonization of cellular stress burden in terms of pro-survival, a molecular finding which might accord with the presentation of a milder phenotype of our NEDHFBA patient.