Search Results

Now showing 1 - 2 of 2
  • Item
    Gli protein activity is controlled by multisite phosphorylation in vertebrate hedgehog signaling
    (Amsterdam : Elsevier, 2013) Niewiadomski, Pawel; Kong, Jennifer H.; Ahrends, Robert; Ma, Yan; Humke, Eric W.; Khan, Sohini; Teruel, Mary N.; Novitch, Bennett G.; Rohatgi, Rajat
    Gli proteins are transcriptional effectors of the Hedgehog (Hh) pathway in both normal development and cancer. We describe a program of multisite phosphorylation that regulates the conversion of Gli proteins into transcriptional activators. In the absence of Hh ligands, Gli activity is restrained by the direct phosphorylation of six conserved serine residues by protein kinase A (PKA), a master negative regulator of the Hh pathway. Activation of signaling leads to a global remodeling of the Gli phosphorylation landscape: the PKA target sites become dephosphorylated, while a second cluster of sites undergoes phosphorylation. The pattern of Gli phosphorylation can regulate Gli transcriptional activity in a graded fashion, suggesting a phosphorylation-based mechanism for how a gradient of Hh signaling in a morphogenetic field can be converted into a gradient of transcriptional activity.
  • Item
    The mTOR and PP2A pathways regulate PHD2 phosphorylation to Fine-Tune HIF1α levels and colorectal cancer cell survival under hypoxia
    (Amsterdam : Elsevier, 2017) Di Conza, Giusy; Cafarello, Sarah Trusso; Loroch, Stefan; Mennerich, Daniela; Deschoemaeker, Sofie; Di Matteo, Mario; Ehling, Manuel; Gevaert, Kris; Prenen, Hans; Zahedi, Rene Peiman; Sickmann, Albert; Kietzmann, Thomas; Moretti, Fabiola; Mazzone, Massimiliano
    Oxygen-dependent HIF1α hydroxylation and degradation are strictly controlled by PHD2. In hypoxia, HIF1α partly escapes degradation because of low oxygen availability. Here, we show that PHD2 is phosphorylated on serine 125 (S125) by the mechanistic target of rapamycin (mTOR) downstream kinase P70S6K and that this phosphorylation increases its ability to degrade HIF1α. mTOR blockade in hypoxia by REDD1 restrains P70S6K and unleashes PP2A phosphatase activity. Through its regulatory subunit B55α, PP2A directly dephosphorylates PHD2 on S125, resulting in a further reduction of PHD2 activity that ultimately boosts HIF1α accumulation. These events promote autophagy-mediated cell survival in colorectal cancer (CRC) cells. B55α knockdown blocks neoplastic growth of CRC cells in vitro and in vivo in a PHD2-dependent manner. In patients, CRC tissue expresses higher levels of REDD1, B55α, and HIF1α but has lower phospho-S125 PHD2 compared with a healthy colon. Our data disclose a mechanism of PHD2 regulation that involves the mTOR and PP2A pathways and controls tumor growth.