Search Results

Now showing 1 - 3 of 3
  • Item
    Metaproteome analysis reveals that syntrophy, competition, and phage-host interaction shape microbial communities in biogas plants
    (London : Biomed Central, 2019) Heyer, R.; Schallert, K.; Siewert, C.; Kohrs, F.; Greve, J.; Maus, I.; Klang, J.; Klocke, M.; Heiermann, M.; Hoffmann, M.; Püttker, S.; Calusinska, M.; Zoun, R.; Saake, G.; Benndorf, D.; Reichl, U.
    Background: In biogas plants, complex microbial communities produce methane and carbon dioxide by anaerobic digestion of biomass. For the characterization of the microbial functional networks, samples of 11 reactors were analyzed using a high-resolution metaproteomics pipeline. Results: Examined methanogenesis archaeal communities were either mixotrophic or strictly hydrogenotrophic in syntrophy with bacterial acetate oxidizers. Mapping of identified metaproteins with process steps described by the Anaerobic Digestion Model 1 confirmed its main assumptions and also proposed some extensions such as syntrophic acetate oxidation or fermentation of alcohols. Results indicate that the microbial communities were shaped by syntrophy as well as competition and phage-host interactions causing cell lysis. For the families Bacillaceae, Enterobacteriaceae, and Clostridiaceae, the number of phages exceeded up to 20-fold the number of host cells. Conclusion: Phage-induced cell lysis might slow down the conversion of substrates to biogas, though, it could support the growth of auxotrophic microbes by cycling of nutrients. © 2019 The Author(s).
  • Item
    Increased pore size of scaffolds improves coating efficiency with sulfated hyaluronan and mineralization capacity of osteoblasts
    (London : Biomed Central, 2019) Krieghoff, Jan; Picke, Ann-Kristin; Salbach-Hirsch, Juliane; Rother, Sandra; Heinemann, Christiane; Bernhardt, Ricardo; Kascholke, Christian; Möller, Stephanie; Rauner, Martina; Schnabelrauch, Matthias; Hintze, Vera; Scharnweber, Dieter; Schulz-Siegmund, Michaela; Hacker, Michael C.; Hofbauer, Lorenz C.; Hofbauer, Christine
    Background: Delayed bone regeneration of fractures in osteoporosis patients or of critical-size bone defects after tumor resection are a major medical and socio-economic challenge. Therefore, the development of more effective and osteoinductive biomaterials is crucial. Methods: We examined the osteogenic potential of macroporous scaffolds with varying pore sizes after biofunctionalization with a collagen/high-sulfated hyaluronan (sHA3) coating in vitro. The three-dimensional scaffolds were made up from a biodegradable three-armed lactic acid-based macromer (TriLA) by cross-polymerization. Templating with solid lipid particles that melt during fabrication generates a continuous pore network. Human mesenchymal stem cells (hMSC) cultivated on the functionalized scaffolds in vitro were investigated for cell viability, production of alkaline phosphatase (ALP) and bone matrix formation. Statistical analysis was performed using student's t-test or two-way ANOVA. Results: We succeeded in generating scaffolds that feature a significantly higher average pore size and a broader distribution of individual pore sizes (HiPo) by modifying composition and relative amount of lipid particles, macromer concentration and temperature for cross-polymerization during scaffold fabrication. Overall porosity was retained, while the scaffolds showed a 25% decrease in compressive modulus compared to the initial TriLA scaffolds with a lower pore size (LoPo). These HiPo scaffolds were more readily coated as shown by higher amounts of immobilized collagen (+ 44%) and sHA3 (+ 25%) compared to LoPo scaffolds. In vitro, culture of hMSCs on collagen and/or sHA3-coated HiPo scaffolds demonstrated unaltered cell viability. Furthermore, the production of ALP, an early marker of osteogenesis (+ 3-fold), and formation of new bone matrix (+ 2.5-fold) was enhanced by the functionalization with sHA3 of both scaffold types. Nevertheless, effects were more pronounced on HiPo scaffolds about 112%. Conclusion: In summary, we showed that the improvement of scaffold pore sizes enhanced the coating efficiency with collagen and sHA3, which had a significant positive effect on bone formation markers, underlining the promise of using this material approach for in vivo studies. © 2019 The Author(s).
  • Item
    Bog ecosystems as a playground for plant-microbe coevolution: bryophytes and vascular plants harbour functionally adapted bacteria
    (London : Biomed Central, 2021) Wicaksono, Wisnu Adi; Cernava, Tomislav; Berg, Christian; Berg, Gabriele
    Background: Bogs are unique ecosystems inhabited by distinctive, coevolved assemblages of organisms, which play a global role for carbon storage, climate stability, water quality and biodiversity. To understand ecology and plant–microbe co-occurrence in bogs, we selected 12 representative species of bryophytes and vascular plants and subjected them to a shotgun metagenomic sequencing approach. We explored specific plant–microbe associations as well as functional implications of the respective communities on their host plants and the bog ecosystem. Results: Microbial communities were shown to be functionally adapted to their plant hosts; a higher colonization specificity was found for vascular plants. Bryophytes that commonly constitute the predominant Sphagnum layer in bogs were characterized by a higher bacterial richness and diversity. Each plant group showed an enrichment of distinct phylogenetic and functional bacterial lineages. Detailed analyses of the metabolic potential of 28 metagenome-assembled genomes (MAGs) supported the observed functional specification of prevalent bacteria. We found that novel lineages of Betaproteobacteria and Actinobacteria in the bog environment harboured genes required for carbon fixation via RuBisCo. Interestingly, several of the highly abundant bacteria in both plant types harboured pathogenicity potential and carried similar virulence factors as found with corresponding human pathogens. Conclusions: The unexpectedly high specificity of the plant microbiota reflects intimate plant–microbe interactions and coevolution in bog environments. We assume that the detected pathogenicity factors might be involved in coevolution processes, but the finding also reinforces the role of the natural plant microbiota as a potential reservoir for human pathogens. Overall, the study demonstrates how plant–microbe assemblages can ensure stability, functioning and ecosystem health in bogs. It also highlights the role of bog ecosystems as a playground for plant–microbe coevolution. [MediaObject not available: see fulltext.] © 2021, The Author(s).