Search Results

Now showing 1 - 2 of 2
  • Item
    Enhanced laccase-mediated transformation of diclofenac and flufenamic acid in the presence of bisphenol A and testing of an enzymatic membrane reactor
    (Heidelberg : Springer, 2018-02-24) Hahn, Veronika; Meister, Mareike; Hussy, Stephan; Cordes, Arno; Enderle, Günther; Saningong, Akuma; Schauer, Frieder
    The inadequate removal of pharmaceuticals and other micropollutants in municipal wastewater treatment plants, as evidenced by their detection of these substances in the aquatic environment has led to the need for sustainable remediation strategies. Laccases possess a number of advantages including a broad substrate spectrum. To identify promoting or inhibitory effects of reaction partners in the remediation processes we tested not only single compounds-as has been described in most studies-but also mixtures of pollutants. The reaction of diclofenac (DCF) and flufenamic acid (FA), mediated by Trametes versicolor laccase resulted in the formation of products, which were more hydrophilic than the respective reactant (reactant concentration of 0.1 mM; laccase activity 0.5 U/ml). Analyses (HPLC, LC/MS) showed that the product 1a and 1b for DCF and FA, respectively, to be a para-benzoquinone imine derivative. The formation of 1a was enhanced by the addition of bisphenol A (BPA). After 6 days 97% more product was formed in the mixture of DCF and BPA compared with DCF tested alone. Product 1a was also detected in experiments with micropollutant-supplemented secondary effluent. Within 24 h 67% and 100% of DCF and BPA were transformed, respectively (25 U/ml). Experiments with a membrane reactor (volume 10 l; phosphate buffer, pH 7) were in good agreement with the results of the laboratory scale experiments (50 ml). EC50-values were also determined. The data support the use of laccases for the removal or detoxification of recalcitrant pollutants. Thus, the enzyme laccase may be a component of an additional environmentally friendly process for the treatment stage of wastewater remediation.
  • Item
    Process disturbances in agricultural biogas production—causes, mechanisms and effects on the biogas microbiome: A review
    (Basel : MDPI AG, 2019) Theuerl, S.; Klang, J.; Prochnow, A.
    Disturbances of the anaerobic digestion process reduce the economic and environmental performance of biogas systems. A better understanding of the highly complex process is of crucial importance in order to avoid disturbances. This review defines process disturbances as significant changes in the functionality within the microbial community leading to unacceptable and severe decreases in biogas production and requiring an active counteraction to be overcome. The main types of process disturbances in agricultural biogas production are classified as unfavorable process temperatures, fluctuations in the availability of macro- and micronutrients (feedstock variability), overload of the microbial degradation potential, process-related accumulation of inhibiting metabolites such as hydrogen (H 2 ), ammonium/ammonia (NH 4 + /NH 3 ) or hydrogen sulphide (H 2 S) and inhibition by other organic and inorganic toxicants. Causes, mechanisms and effects on the biogas microbiome are discussed. The need for a knowledge-based microbiome management to ensure a stable and efficient production of biogas with low susceptibility to disturbances is derived and an outlook on potential future process monitoring and control by means of microbial indicators is provided.