Search Results

Now showing 1 - 2 of 2
  • Item
    Strontium substitution of gelatin modified calcium hydrogen phosphates as porous hard tissue substitutes
    (New York, NY [u.a.] : Wiley, 2020) Kruppke, Benjamin; Heinemann, Christiane; Gebert, Annett; Rohnke, Marcus; Weiß, Manuel; Henß, Anja; Wiesmann, Hans-Peter; Hanke, Thomas
    Aiming at the generation of a high strontium-containing degradable bone substitute, the exchange of calcium with strontium in gelatin-modified brushite was investigated. The ion substitution showed two mineral groups, the high-calcium containing minerals with a maximum measured molar Ca/Sr ratio of 80%/20% (mass ratio 63%/37%) and the high-strontium containing ones with a maximum measured molar Ca/Sr ratio of 21%/79% (mass ratio 10%/90%). In contrast to the high-strontium mineral phases, a high mass loss was observed for the calcium-based minerals during incubation in cell culture medium (alpha-MEM), but also an increase in strength owing to dissolution and re-precipitation. This resulted for the former in a decrease of cation concentration (Ca + Sr) in the medium, while the pH value decreased and the phosphate ion concentration rose significantly. The latter group of materials, the high-strontium containing ones, showed only a moderate change in mass and a decrease in strength, but the Ca + Sr concentration remained permanently above the initial calcium concentration in the medium. This might be advantageous for a future planned application by supporting bone regeneration on the cellular level. © 2020 The Authors. Journal of Biomedical Materials Research Part A published by Wiley Periodicals LLC.
  • Item
    Timescales of self-healing in human bone tissue and polymeric ionic liquids
    (London : Institution of Civil Engineers, 2014) Akbarzadeh, Johanna; Puchegger, Stephan; Stojanovic, Anja; Kirchner, Helmut O.K.; Binder, Wolfgang H.; Bernstorff, Sigrid; Zioupos, Peter; Peterlik, Herwig
    Strain (stress-free) relaxation in mechanically prestrained bone has a time constant of 75 s. It occurs by a reorganization of the proteoglycan-glycoprotein matrix between collagen fibers, which requires ionic interactions. Dissolving and relinking the ionic bonds is thus an important tool of nature to enable plastic deformation and to develop self-healing tissues. A way to transfer this approach to technical materials is the attachment of ionic end groups to polymeric chains. In these classes of materials, the so-called polymeric ionic liquids, structural recovery of thermally disorganized material is observed. A time constant between minutes and a week could be achieved, also by ionic rearrangement. The same mechanism, rearrangement of ionic bonds, can lead to vastly different relaxation times when the ionic interaction is varied by exchange of the cationic end groups or the anions.