Search Results

Now showing 1 - 3 of 3
  • Item
    Impact of extreme weather conditions on European crop production in 2018
    (London : Royal Society, 2020) Beillouin, Damien; Schauberger, Bernhard; Bastos, Ana; Ciais, Phillipe; Makowski, David
    Extreme weather increases the risk of large-scale crop failure. The mechanisms involved are complex and intertwined, hence undermining the identification of simple adaptation levers to help improve the resilience of agricultural production. Based on more than 82 000 yield data reported at the regional level in 17 European countries, we assess how climate affected the yields of nine crop species. Using machine learning models, we analyzed historical yield data since 1901 and then focus on 2018, which has experienced a multiplicity and a diversity of atypical extreme climatic conditions. Machine learning models explain up to 65% of historical yield anomalies. We find that both extremes in temperature and precipitation are associated with negative yield anomalies, but with varying impacts in different parts of Europe. In 2018, Northern and Eastern Europe experienced multiple and simultaneous crop failures - among the highest observed in recent decades. These yield losses were associated with extremely low rainfalls in combination with high temperatures between March and August 2018. However, the higher than usual yields recorded in Southern Europe - caused by favourable spring rainfall conditions - nearly offset the large decrease in Northern European crop production. Our results outline the importance of considering single and compound climate extremes to analyse the causes of yield losses in Europe. We found no clear upward or downward trend in the frequency of extreme yield losses for any of the considered crops between 1990 and 2018. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'. © 2020 The Authors.
  • Item
    Diverging importance of drought stress for maize and winter wheat in Europe
    ([London] : Nature Publishing Group UK, 2018) Webber, Heidi; Ewert, Frank; Olesen, Jørgen E.; Müller, Christoph; Fronzek, Stefan; Ruane, Alex C.; Bourgault, Maryse; Martre, Pierre; Ababaei, Behnam; Bindi, Marco; Ferrise, Roberto; Finger, Robert; Fodor, Nándor; Gabaldón-Leal, Clara; Gaiser, Thomas; Jabloun, Mohamed; Kersebaum, Kurt-Christian; Lizaso, Jon I.; Lorite, Ignacio J.; Manceau, Loic; Moriondo, Marco; Nendel, Claas; Rodríguez, Alfredo; Ruiz-Ramos, Margarita; Semenov, Mikhail A.; Siebert, Stefan; Stella, Tommaso; Stratonovitch, Pierre; Trombi, Giacomo; Wallach, Daniel
    Understanding the drivers of yield levels under climate change is required to support adaptation planning and respond to changing production risks. This study uses an ensemble of crop models applied on a spatial grid to quantify the contributions of various climatic drivers to past yield variability in grain maize and winter wheat of European cropping systems (1984–2009) and drivers of climate change impacts to 2050. Results reveal that for the current genotypes and mix of irrigated and rainfed production, climate change would lead to yield losses for grain maize and gains for winter wheat. Across Europe, on average heat stress does not increase for either crop in rainfed systems, while drought stress intensifies for maize only. In low-yielding years, drought stress persists as the main driver of losses for both crops, with elevated CO2 offering no yield benefit in these years.
  • Item
    Plant genotype influence the structure of cereal seed fungal microbiome
    (Lausanne : Frontiers Media, 2023) Malacrinò, Antonino; Abdelfattah, Ahmed; Belgacem, Imen; Schena, Leonardo
    Plant genotype is a crucial factor for the assembly of the plant-associated microbial communities. However, we still know little about the variation of diversity and structure of plant microbiomes across host species and genotypes. Here, we used six species of cereals (Avena sativa, Hordeum vulgare, Secale cereale, Triticum aestivum, Triticum polonicum, and Triticum turgidum) to test whether the plant fungal microbiome varies across species, and whether plant species use different mechanisms for microbiome assembly focusing on the plant ears. Using ITS2 amplicon metagenomics, we found that host species influences the diversity and structure of the seed-associated fungal communities. Then, we tested whether plant genotype influences the structure of seed fungal communities across different cultivars of T. aestivum (Aristato, Bologna, Rosia, and Vernia) and T. turgidum (Capeiti, Cappelli, Mazzancoio, Trinakria, and Timilia). We found that cultivar influences the seed fungal microbiome in both species. We found that in T. aestivum the seed fungal microbiota is more influenced by stochastic processes, while in T. turgidum selection plays a major role. Collectively, our results contribute to fill the knowledge gap on the wheat seed microbiome assembly and, together with other studies, might contribute to understand how we can manipulate this process to improve agriculture sustainability.