Search Results

Now showing 1 - 10 of 68
  • Item
    Highly Conductive, Stretchable, and Cell-Adhesive Hydrogel by Nanoclay Doping
    (Weinheim : Wiley-VCH, 2019) Tondera, Christoph; Akbar, Teuku Fawzul; Thomas, Alvin Kuriakose; Lin, Weilin; Werner, Carsten; Busskamp, Volker; Zhang, Yixin; Minev, Ivan R.
    Electrically conductive materials that mimic physical and biological properties of tissues are urgently required for seamless brain-machine interfaces. Here, a multinetwork hydrogel combining electrical conductivity of 26 S m-1 , stretchability of 800%, and tissue-like elastic modulus of 15 kPa with mimicry of the extracellular matrix is reported. Engineering this unique set of properties is enabled by a novel in-scaffold polymerization approach. Colloidal hydrogels of the nanoclay Laponite are employed as supports for the assembly of secondary polymer networks. Laponite dramatically increases the conductivity of in-scaffold polymerized poly(ethylene-3,4-diethoxy thiophene) in the absence of other dopants, while preserving excellent stretchability. The scaffold is coated with a layer containing adhesive peptide and polysaccharide dextran sulfate supporting the attachment, proliferation, and neuronal differentiation of human induced pluripotent stem cells directly on the surface of conductive hydrogels. Due to its compatibility with simple extrusion printing, this material promises to enable tissue-mimetic neurostimulating electrodes.
  • Item
    Preparation of Polymer Electrolyte Membranes via Radiation-Induced Graft Copolymerization on Poly(ethylene-alt-tetrafluoroethylene) (ETFE) Using the Crosslinker N,N′-Methylenebis(acrylamide)
    (Basel : MDPI, 2018) Ke, Xi; Drache, Marco; Gohs, Uwe; Kunz, Ulrich; Beuermann, Sabine
    Polymer electrolyte membranes (PEM) prepared by radiation-induced graft copolymerization are investigated. For this purpose, commercial poly(ethylene-alt-tetrafluoroethylene) (ETFE) films were activated by electron beam treatment and subsequently grafted with the monomers glycidyl methacrylate (GMA), hydroxyethyl methacrylate (HEMA) and N,N′-methylenebis(acrylamide) (MBAA) as crosslinker. The target is to achieve a high degree of grafting (DG) and high proton conductivity. To evaluate the electrochemical performance, the PEMs were tested in a fuel cell and in a vanadium redox-flow battery (VRFB). High power densities of 134 mW∙cm−2 and 474 mW∙cm−2 were observed, respectively.
  • Item
    Photo-Ordering and Deformation in Azobenzene-Containing Polymer Networks under Irradiation with Elliptically Polarized Light
    (Basel : MDPI, 2023) Toshchevikov, Vladimir; Saphiannikova, Marina
    Azobenzene-containing polymers (azo-polymers) have been a subject of extensive investigations during the last two and half decades, due to their remarkable ability to undergo pronounced alignment and deformation under irradiation with light. The molecular ordering and deformation in azo-polymers of various structures under irradiation with linearly polarized light was described in a series of theoretical works, based on the effect of the reorientation of azobenzene moieties due to the anisotropic character of the photoisomerization processes. In the present study, we generalize the previous orientation approach to describe the photo-alignment and deformation of azo-polymer networks under irradiation with elliptically polarized light. We demonstrate that, in general, the light-induced ordering and deformation have a biaxial symmetry defined by the polarization ellipse. Azobenzene chromophores have a tendency to align along the direction of light propagation, the orientation in the other two directions being dependent of the aspect ratio of the polarization ellipse. This causes deformation of azo-polymer networks along the direction of light propagation, the sign of which (expansion/contraction) is defined by a chemical structure of network strands. Theoretical results are in agreement with experiments and have a practical importance to predict the photo-mechanical response of azo-polymers depending on their structure and on the polarization of light.
  • Item
    Enhanced growth of lapine anterior cruciate ligament-derived fibroblasts on scaffolds embroidered from poly(L-lactide-co-ε-caprolactone) and polylactic acid threads functionalized by fluorination and hexamethylene diisocyanate cross-linked collagen foams
    (Basel : Molecular Diversity Preservation International, 2020) Gögele, Clemens; Hahn, Judith; Elschner, Cindy; Breier, Annette; Schröpfer, Michaela; Prade, Ina; Meyer, Michael; Schulze-Tanzil, Gundula
    Reconstruction of ruptured anterior cruciate ligaments (ACLs) is limited by the availability and donor site morbidity of autografts. Hence, a tissue engineered graft could present an alternative in the future. This study was undertaken to determine the performance of lapine (L) ACL-derived fibroblasts on embroidered poly(l-lactide-co-e-caprolactone) (P(LA-CL)) and polylactic acid (PLA) scaffolds in regard to a tissue engineering approach for ACL reconstruction. Surface modifications of P(LA-CL)/PLA by gas-phase fluorination and cross-linking of a collagen foam using either ethylcarbodiimide (EDC) or hexamethylene diisocyanate (HMDI) were tested regarding their influence on cell adhesion, growth and gene expression. The experiments were performed using embroidered P(LA-CL)/PLA scaffolds that were seeded dynamically or statically with LACL-derived fibroblasts. Scaffold cytocompatibility, cell survival, numbers, metabolic activity, ultrastructure and sulfated glycosaminoglycan (sGAG) synthesis were evaluated. Quantitative real-time polymerase chain reaction (QPCR) revealed gene expression of collagen type I (COL1A1), decorin (DCN), tenascin C (TNC), Mohawk (MKX) and tenomodulin (TNMD). All tested scaffolds were highly cytocompatible. A significantly higher cellularity and larger scaffold surface areas colonized by cells were detected in HMDI cross-linked and fluorinated scaffolds compared to those cross-linked with EDC or without any functionalization. By contrast, sGAG synthesis was higher in controls. Despite the fact that the significance level was not reached, gene expressions of ligament extracellular matrix components and differentiation markers were generally higher in fluorinated scaffolds with cross-linked collagen foams. LACL-derived fibroblasts maintained their differentiated phenotype on fluorinated scaffolds supplemented with a HMDI cross-linked collagen foam, making them a promising tool for ACL tissue engineering. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Light-Driven Proton Transfer for Cyclic and Temporal Switching of Enzymatic Nanoreactors
    (Weinheim : Wiley-VCH, 2020) Moreno, Silvia; Sharan, Priyanka; Engelke, Johanna; Gumz, Hannes; Boye, Susanne; Oertel, Ulrich; Wang, Peng; Banerjee, Susanta; Klajn, Rafal; Voit, Brigitte; Lederer, Albena; Appelhans, Dietmar
    Temporal activation of biological processes by visible light and subsequent return to an inactive state in the absence of light is an essential characteristic of photoreceptor cells. Inspired by these phenomena, light-responsive materials are very attractive due to the high spatiotemporal control of light irradiation, with light being able to precisely orchestrate processes repeatedly over many cycles. Herein, it is reported that light-driven proton transfer triggered by a merocyanine-based photoacid can be used to modulate the permeability of pH-responsive polymersomes through cyclic, temporally controlled protonation and deprotonation of the polymersome membrane. The membranes can undergo repeated light-driven swelling-contraction cycles without losing functional effectiveness. When applied to enzyme loaded-nanoreactors, this membrane responsiveness is used for the reversible control of enzymatic reactions. This combination of the merocyanine-based photoacid and pH-switchable nanoreactors results in rapidly responding and versatile supramolecular systems successfully used to switch enzymatic reactions ON and OFF on demand.
  • Item
    Viscoelastic Behavior of Embroidered Scaffolds for ACL Tissue Engineering Made of PLA and P(LA-CL) After In Vitro Degradation
    (Basel : Molecular Diversity Preservation International, 2019) Hahn, Judith; Schulze-Tanzil, Schulze-Tanzil; Schröpfer, Michaela; Meyer, Michael; Gögele, Clemens; Hoyer, Mariann; Spickenheuer, Axel; Heinrich, Gert; Breier, Annette
    A rupture of the anterior cruciate ligament (ACL) is the most common knee ligament injury. Current applied reconstruction methods have limitations in terms of graft availability and mechanical properties. A new approach could be the use of a tissue engineering construct that temporarily reflects the mechanical properties of native ligament tissues and acts as a carrier structure for cell seeding. In this study, embroidered scaffolds composed of polylactic acid (PLA) and poly(lactic-co-"-caprolactone) (P(LA-CL)) threads were tested mechanically for their viscoelastic behavior under in vitro degradation. The relaxation behavior of both scaffold types (moco: mono-component scaffold made of PLA threads, bico: bi-component scaffold made of PLA and P(LA-CL) threads) was comparable to native lapine ACL. Most of the lapine ACL cells survived 32 days of cell culture and grew along the fibers. Cell vitality was comparable for moco and bico scaffolds. Lapine ACL cells were able to adhere to the polymer surfaces and spread along the threads throughout the scaffold. The mechanical behavior of degrading matrices with and without cells showed no significant differences. These results demonstrate the potential of embroidered scaffolds as an ACL tissue engineering approach. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Sv40 transfected human anterior cruciate ligament derived ligamentocytes—suitable as a human in vitro model for ligament reconstruction?
    (Basel : Molecular Diversity Preservation International, 2020) Schulze-Tanzil, Gundula; Arnold, Philipp; Gögele, Clemens; Hahn, Judith; Breier, Annette; Meyer, Michael; Kohl, Benjamin; Schröpfer, Michaela; Schwarz, Silke
    Cultured human primary cells have a limited lifespan undergoing dedifferentiation or senescence. Anterior cruciate ligaments (ACL) are hypocellular but tissue engineering (TE) requires high cell numbers. Simian virus (SV) 40 tumor (T) antigen expression could extend the lifespan of cells. This study aimed to identify cellular changes induced by SV40 expression in human ACL ligamentocytes by comparing them with non-transfected ligamentocytes and tissue of the same donor to assess their applicability as TE model. Human ACL ligamentocytes (40-year-old female donor after ACL rupture) were either transfected with a SV40 plasmid or remained non-transfected (control) before monitored for SV40 expression, survival, and DNA content. Protein expression of cultured ligamentocytes was compared with the donor tissue. Ligamentocyte spheroids were seeded on scaffolds embroidered either from polylactic acid (PLA) threads solely or combined PLA and poly (L-lactide-co-e-caprolactone) (P(LA-CL)) threads. These scaffolds were further functionalized with fluorination and fibrillated collagen foam. Cell distribution and survival were monitored for up to five weeks. The transfected cells expressed the SV40 antigen throughout the entire observation time, but often exhibited random and incomplete cell divisions with significantly more dying cells, significantly more DNA and more numerous nucleoli than controls. The expression profile of non-transfected and SV40-positive ligamentocytes was similar. In contrast to controls, SV40-positive cells formed larger spheroids, produced less vimentin and focal adhesions and died on the scaffolds after 21 d. Functionalized scaffolds supported human ligamentocyte growth. SV40 antigen expressing ligamentocytes share many properties with their non-transfected counterparts suggesting them as a model, however, applicability for TE is limited. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    CuxCo1-xFe2O4 (x = 0.33, 0.67, 1) Spinel Ferrite Nanoparticles Based Thermoplastic Polyurethane Nanocomposites with Reduced Graphene Oxide for Highly Efficient Electromagnetic Interference Shielding
    (Basel : Molecular Diversity Preservation International (MDPI), 2022-2-26) Anju; Yadav, Raghvendra Singh; Pötschke, Petra; Pionteck, Jürgen; Krause, Beate; Kuřitka, Ivo; Vilčáková, Jarmila; Škoda, David; Urbánek, Pavel; Machovský, Michal; Masař, Milan; Urbánek, Michal
    CuxCo1-x Fe2O4 (x = 0.33,0.67,1)-reduced graphene oxide (rGO)-thermoplastic polyurethane (TPU) nanocomposites exhibiting highly efficient electromagnetic interference (EMI) shielding were prepared by a melt-mixing approach using a microcompounder. Spinel ferrite Cu0.33Co0.67Fe2O4 (Cu-CoF1), Cu0.67Co0.33Fe2O4 (CuCoF2) and CuFe2O4 (CuF3) nanoparticles were synthesized using the sonochemical method. The CuCoF1 and CuCoF2 exhibited typical ferromagnetic features, whereas CuF3 displayed superparamagnetic characteristics. The maximum value of EMI total shielding effectiveness (SEt) was noticed to be 42.9 dB, 46.2 dB, and 58.8 dB for CuCoF1-rGO-TPU, CuCoF2-rGO-TPU, and CuF3-rGO-TPU nanocomposites, respectively, at a thickness of 1 mm. The highly efficient EMI shielding performance was attributed to the good impedance matching, conductive, dielectric, and magnetic loss. The demonstrated nanocomposites are promising candidates for a lightweight, flexible, and highly efficient EMI shielding material.
  • Item
    Understanding Beta-Lactam-Induced Lysis at the Single-Cell Level
    (Lausanne : Frontiers Media, 2021) Wong, Felix; Wilson, Sean; Helbig, Ralf; Hegde, Smitha; Aftenieva, Olha; Zheng, Hai; Liu, Chenli; Pilizota, Teuta; Garner, Ethan C.; Amir, Ariel; Renner, Lars D.
    Mechanical rupture, or lysis, of the cytoplasmic membrane is a common cell death pathway in bacteria occurring in response to β-lactam antibiotics. A better understanding of the cellular design principles governing the susceptibility and response of individual cells to lysis could indicate methods of potentiating β-lactam antibiotics and clarify relevant aspects of cellular physiology. Here, we take a single-cell approach to bacterial cell lysis to examine three cellular features-turgor pressure, mechanosensitive channels, and cell shape changes-that are expected to modulate lysis. We develop a mechanical model of bacterial cell lysis and experimentally analyze the dynamics of lysis in hundreds of single Escherichia coli cells. We find that turgor pressure is the only factor, of these three cellular features, which robustly modulates lysis. We show that mechanosensitive channels do not modulate lysis due to insufficiently fast solute outflow, and that cell shape changes result in more severe cellular lesions but do not influence the dynamics of lysis. These results inform a single-cell view of bacterial cell lysis and underscore approaches of combatting antibiotic tolerance to β-lactams aimed at targeting cellular turgor.
  • Item
    Geometry-Driven Cell Organization Determines Tissue Growths in Scaffold Pores: Consequences for Fibronectin Organization
    (San Francisco, CA : Public Library of Science, 2013) Joly, P.; Duda, G.N.; Schöne, M.; Welzel, P.B.; Freudenberg, U.; Werner, C.; Petersen, A.
    To heal tissue defects, cells have to bridge gaps and generate new extracellular matrix (ECM). Macroporous scaffolds are frequently used to support the process of defect filling and thus foster tissue regeneration. Such biomaterials contain micro-voids (pores) that the cells fill with their own ECM over time. There is only limited knowledge on how pore geometry influences cell organization and matrix production, even though it is highly relevant for scaffold design. This study hypothesized that 1) a simple geometric description predicts cellular organization during pore filling at the cell level and that 2) pore closure results in a reorganization of ECM. Scaffolds with a broad distribution of pore sizes (macroporous starPEG-heparin cryogel) were used as a model system and seeded with primary fibroblasts. The strategies of cells to fill pores could be explained by a simple geometrical model considering cells as tensioned chords. The model matched qualitatively as well as quantitatively by means of cell number vs. open cross-sectional area for all pore sizes. The correlation between ECM location and cell position was higher when the pores were not filled with tissue (Pearson's coefficient ρ = 0.45±0.01) and reduced once the pores were closed (ρ = 0.26±0.04) indicating a reorganization of the cell/ECM network. Scaffold pore size directed the time required for pore closure and furthermore impacted the organization of the fibronectin matrix. Understanding how cells fill micro-voids will help to design biomaterial scaffolds that support the endogenous healing process and thus allow a fast filling of tissue defects.