Search Results

Now showing 1 - 10 of 16
  • Item
    Reducing stranded assets through early action in the Indian power sector
    (Bristol : IOP Publ., 2020) Malik, Aman; Bertram, Christoph; Despres, Jacques; Emmerling, Johannes; Fujimori, Shinichiro; Garg, Amit; Kriegler, Elmar; Luderer, Gunnar; Mathur, Ritu; Roelfsema, Mark; Shekhar, Swapnil; Vishwanathan, Saritha; Vrontisi, Zoi
    Cost-effective achievement of the Paris Agreement's long-term goals requires the unanimous phase-out of coal power generation by mid-century. However, continued investments in coal power plants will make this transition difficult. India is one of the major countries with significant under construction and planned increase in coal power capacity. To ascertain the likelihood and consequences of the continued expansion of coal power for India's future mitigation options, we use harmonised scenario results from national and global models along with projections from various government reports. Both these approaches estimate that coal capacity is expected to increase until 2030, along with rapid developments in wind and solar power. However, coal capacity stranding of the order of 133–237 GW needs to occur after 2030 if India were to pursue an ambitious climate policy in line with a well-below 2 °C target. Earlier policy strengthening starting after 2020 can reduce stranded assets (14–159 GW) but brings with it political economy and renewable expansion challenges. We conclude that a policy limiting coal plants to those under construction combined with higher solar targets could be politically feasible, prevent significant stranded capacity, and allow higher mitigation ambition in the future.
  • Item
    Reducing deforestation and improving livestock productivity: greenhouse gas mitigation potential of silvopastoral systems in Caquetá
    (Bristol : IOP Publ., 2019) Landholm, David M.; Pradhan, Prajal; Wegmann, Peter; Sánchez, Miguel A. Romero; Salazar, Juan Carlos Suárez; Kropp, Juergen P.
    Colombia's agriculture, forestry and other land use sector accounts for nearly half of its total greenhouse gas (GHG) emissions. The importance of smallholder deforestation is comparatively high in relation to its regional counterparts, and livestock agriculture represents the largest driver of primary forest depletion. Silvopastoral systems (SPSs) are presented as agroecological solutions that synergistically enhance livestock productivity, improve local farmers' livelihoods and hold the potential to reduce pressure on forest conversion. The department of Caquetá represents Colombia's most important deforestation hotspot. Targeting smallholder livestock farms through survey data, in this work we investigate the GHG mitigation potential of implementing SPSs for smallholder farms in this region. Specifically, we assess whether the carbon sequestration taking place in the soil and biomass of SPSs is sufficient to offset the per-hectare increase in livestock GHG emissions resulting from higher stocking rates. To address these questions we use data on livestock population characteristics and historic land cover changes reported from a survey covering 158 farms and model the carbon sequestration occurring in three different scenarios of progressively-increased SPS complexity using the CO2 fix model. We find that, even with moderate tree planting densities, the implementation of SPSs can reduce GHG emissions by 2.6 Mg CO2e ha−1 yr−1 in relation to current practices, while increasing agriculture productivity and contributing to the restoration of severely degraded landscapes.
  • Item
    The world’s growing municipal solid waste: trends and impacts
    (Bristol : IOP Publ., 2020) Chen, David Meng-Chuen; Bodirsky, Benjamin Leon; Krueger, Tobias; Mishra, Abhijeet; Popp, Alexander
    Global municipal waste production causes multiple environmental impacts, including greenhouse gas emissions, ocean plastic accumulation, and nitrogen pollution. However, estimates of both past and future development of waste and pollution are scarce. We apply compositional Bayesian regression to produce the first estimates of past and future (1965–2100) waste generation disaggregated by composition and treatment, along with resultant environmental impacts, for every country. We find that total wastes grow at declining speed with economic development, and that global waste generation has increased from 635 Mt in 1965 to 1999 Mt in 2015 and reaches 3539 Mt by 2050 (median values, middle-of-the-road scenario). From 2015 to 2050, the global share of organic waste declines from 47% to 39%, while all other waste type shares increase, especially paper. The share of waste treated in dumps declines from 28% to 18%, and more sustainable recycling, composting, and energy recovery treatments increase. Despite these increases, we estimate environmental loads to continue increasing in the future, although yearly plastic waste input into the oceans has reached a peak. Waste production does not appear to follow the environmental Kuznets curve, and current projections do not meet UN SDGs for waste reduction. Our study shows that a continuation of current trends and improvements is insufficient to reduce pressures on natural systems and achieve a circular economy. Relative to 2015, the amount of recycled waste would need to increase from 363 Mt to 740 Mt by 2030 to begin reducing unsustainable waste generation, compared to 519 Mt currently projected.
  • Item
    One simulation, different conclusions—the baseline period makes the difference!
    (Bristol : IOP Publ., 2020) Liersch, S.; Drews, M.; Pilz, T.; Salack, S.; Sietz, D.; Aich, V.; Larsen, M.A.D; Gädeke, A.; Halsnæ s, K.; Thiery, W.; Huang, S.; Lobanova, A.; Koch, H.; Hattermann, F.F.
    The choice of the baseline period, intentionally chosen or not, as a reference for assessing future changes of any projected variable can play an important role for the resulting statement. In regional climate impact studies, well-established or arbitrarily chosen baselines are often used without being questioned. Here we investigated the effects of different baseline periods on the interpretation of discharge simulations from eight river basins in the period 1960–2099. The simulations were forced by four bias-adjusted and downscaled Global Climate Modelsunder two radiative forcing scenarios (RCP 2.6 and RCP 8.5). To systematically evaluate how far the choice of different baselines impacts the simulation results, we developed a similarity index that compares two time series of projected changes. The results show that 25% of the analyzed simulations are sensitive to the choice of the baseline period under RCP 2.6 and 32% under RCP 8.5. In extreme cases, change signals of two time series show opposite trends. This has serious consequences for key messages drawn from a basin-scale climate impact study. To address this problem, an algorithm was developed to identify flexible baseline periods for each simulation individually, which better represent the statistical properties of a given historical period.
  • Item
    Peatland protection and restoration are key for climate change mitigation
    (Bristol : IOP Publ., 2020) Humpenöder, Florian; Karstens, Kristine; Lotze-Campen, Hermann; Leifeld, Jens; Menichetti, Lorenzo; Barthelmes, Alexandra; Popp, Alexander
    Peatlands cover only about 3% the global land area, but store about twice as much carbon as global forest biomass. If intact peatlands are drained for agriculture or other human uses, peat oxidation can result in considerable CO2 emissions and other greenhouse gases (GHG) for decades or even centuries. Despite their importance, emissions from degraded peatlands have so far not been included explicitly in mitigation pathways compatible with the Paris Agreement. Such pathways include land-demanding mitigation options like bioenergy or afforestation with substantial consequences for the land system. Therefore, besides GHG emissions owing to the historic conversion of intact peatlands, the increased demand for land in current mitigation pathways could result in drainage of presently intact peatlands, e.g. for bioenergy production. Here, we present the first quantitative model-based projections of future peatland dynamics and associated GHG emissions in the context of a 2 °C mitigation pathway. Our spatially explicit land-use modelling approach with global coverage simultaneously accounts for future food demand, based on population and income projections, and land-based mitigation measures. Without dedicated peatland policy and even in the case of peatland protection, our results indicate that the land system would remain a net source of CO2 throughout the 21st century. This result is in contrast to the outcome of current mitigation pathways, in which the land system turns into a net carbon sink by 2100. However, our results indicate that it is possible to reconcile land use and GHG emissions in mitigation pathways through a peatland protection and restoration policy. According to our results, the land system would turn into a global net carbon sink by 2100, as projected by current mitigation pathways, if about 60% of present-day degraded peatlands would be rewetted in the coming decades, next to the protection of intact peatlands.
  • Item
    Matching scope, purpose and uses of planetary boundaries science
    (Bristol : IOP Publ., 2019) Downing, Andrea S.; Bhowmik, Avit; Collste, David; Cornell, Sarah E.; Donges, Jonathan; Fetzer, Ingo; Häyhä, Tiina; Hinton, Jennifer; Lade, Steven; Mooij, Wolf M.
    Background: The Planetary Boundaries concept (PBc) has emerged as a key global sustainability concept in international sustainable development arenas. Initially presented as an agenda for global sustainability research, it now shows potential for sustainability governance. We use the fact that it is widely cited in scientific literature (>3500 citations) and an extensively studied concept to analyse how it has been used and developed since its first publication. Design: From the literature that cites the PBc, we select those articles that have the terms 'planetary boundaries' or 'safe operating space' in either title, abstract or keywords. We assume that this literature substantively engages with and develops the PBc. Results: We find that 6% of the citing literature engages with the concept. Within this fraction of the literature we distinguish commentaries—that discuss the context and challenges to implementing the PBc, articles that develop the core biogeophysical concept and articles that apply the concept by translating to sub-global scales and by adding a human component to it. Applied literature adds to the concept by explicitly including society through perspectives of impacts, needs, aspirations and behaviours. Discussion: Literature applying the concept does not yet include the more complex, diverse, cultural and behavioural facet of humanity that is implied in commentary literature. We suggest there is need for a positive framing of sustainability goals—as a Safe Operating Space rather than boundaries. Key scientific challenges include distinguishing generalised from context-specific knowledge, clarifying which processes are generalizable and which are scalable, and explicitly applying complex systems' knowledge in the application and development of the PBc. We envisage that opportunities to address these challenges will arise when more human social dimensions are integrated, as we learn to feed the global sustainability vision with a plurality of bottom-up realisations of sustainability.
  • Item
    The emission benefits of European integration
    (Bristol : IOP Publ., 2019) Costa, Luís; Moreau, Vincent
    Simulating the implications of Brexit on the UK's emissions embodied in trade with a multi-region input–output table exposes the benefits of European integration. Under 2014 trade volumes, technologies and energy mixes, a hard Brexit—reverting to a trade pattern between the UK and the EU prior to the European Internal Market (EIM)—would imply a rise of about 0.215Gt of CO2eq in the UK's emissions embodied in imports. This is equivalent to a 38% rise in UK's imported emissions in 2014 and roughly equal to the territorial emissions of the Netherlands in 2017. Substituting imports from the EU with those from the Rest of the World (RoW), under the same conditions, implies adding 0.35 kg of CO2eq, on average, to each dollar of activity imported in the UK. This underlines the emission benefits of an integrated European market abiding to common environmental standards and climate policies. Filling the gap in imports lost from the UK to the EU by stepping up production within the EIM would result in an extra 0.012Gt of CO2eq, a rather small increase when compared to the additional emissions in the UK's imports following Brexit. Should the EU reallocate the lost imports from the UK to the RoW, a total of 0.128Gt of CO2eq would be added to the EIM imports. This exposes the environmental benefits in terms of emissions in keeping UK trade closely linked to the EU and the important role that Single Member States can play indirectly on EU's import emissions. In terms of emissions embodied in trade, the sum of the EU market is, paradoxically and for the better, less than the sum of its individual parts.
  • Item
    Pronounced and unavoidable impacts of low-end global warming on northern high-latitude land ecosystems
    (Bristol : IOP Publ., 2020) Ito, Akihiko; Reyer, Christopher P. O.; Gädeke, Anne; Ciais, Philippe; Chang, Jinfeng; Chen, Min; François, Louis; Forrest, Matthew; Hickler, Thomas; Ostberg, Sebastian; Shi, Hao; Thiery, Wim; Tian, Hanqin
    Arctic ecosystems are particularly vulnerable to climate change because of Arctic amplification. Here, we assessed the climatic impacts of low-end, 1.5 °C, and 2.0 °C global temperature increases above pre-industrial levels, on the warming of terrestrial ecosystems in northern high latitudes (NHL, above 60 °N including pan-Arctic tundra and boreal forests) under the framework of the Inter-Sectoral Impact Model Intercomparison Project phase 2b protocol. We analyzed the simulated changes of net primary productivity, vegetation biomass, and soil carbon stocks of eight ecosystem models that were forced by the projections of four global climate models and two atmospheric greenhouse gas pathways (RCP2.6 and RCP6.0). Our results showed that considerable impacts on ecosystem carbon budgets, particularly primary productivity and vegetation biomass, are very likely to occur in the NHL areas. The models agreed on increases in primary productivity and biomass accumulation, despite considerable inter-model and inter-scenario differences in the magnitudes of the responses. The inter-model variability highlighted the inadequacies of the present models, which fail to consider important components such as permafrost and wildfire. The simulated impacts were attributable primarily to the rapid temperature increases in the NHL and the greater sensitivity of northern vegetation to warming, which contrasted with the less pronounced responses of soil carbon stocks. The simulated increases of vegetation biomass by 30–60 Pg C in this century have implications for climate policy such as the Paris Agreement. Comparison between the results at two warming levels showed the effectiveness of emission reductions in ameliorating the impacts and revealed unavoidable impacts for which adaptation options are urgently needed in the NHL ecosystems.
  • Item
    Multi-scale analysis of the water-energy-food nexus in the Gulf region
    (Bristol : IOP Publ., 2020) Siderius, Christian; Conway, Declan; Yassine, Mohamed; Murken, Lisa; Lostis, Pierre-Louis; Dalin, Carole
    We quantify the heavily oil-dominated WEF nexus in three Gulf Cooperation Council (GCC) countries (Kuwait, Qatar and Saudi Arabia) across spatial scales and over time, using available empirical data at the national level, and explore the exposure to nexus stresses (groundwater depletion) in other countries through virtual water trade. At the domestic scale, WEF trade-offs are fairly limited; while all sectors require considerable amounts of energy, the requirements for water and food production are modest compared to other uses. At the international scale, revenues from oil exports in the GCC allow the region to compensate for low food production and scarce water availability. This dependency is dynamic over time, increasing when oil prices are low and food prices are high. We show how reducing domestic trade-offs can lead to higher exposure internationally, with rice imports originating in regions where groundwater is being depleted. However, Saudi Arabia's increased wheat imports, after reversing its food self-sufficiency policy, have had limited effects on groundwater depletion elsewhere. Climate change mitigation links the WEF nexus to the global scale. While there is great uncertainty about future international climate policy, our analysis illustrates how implementation of measures to account for the social costs of carbon would reduce the oil and gas revenues available to import food and desalinate water in the GCC.
  • Item
    Road to glory or highway to hell? Global road access and climate change mitigation
    (Bristol : IOP Publ., 2020) Wenz, Leonie; Weddige, Ulf; Jakob, Michael; Steckel, Jan Christoph
    Transportation infrastructure is considered a key factor for economic development and poverty alleviation. The United Nations have explicitly included the provision of transport infrastructure access, e.g. through all-season road access, in their Sustainable Development Goal agenda (SDGs, target 9.1). Yet, little is known about the number of people lacking access to roads worldwide, the costs of closing existing access gaps and the implications of additional roads for other sustainability concerns such as climate change mitigation (SDG-13). Here we quantify, for 250 countries and territories, the percentage of population without road access in 2 km. We find that infrastructure investments required to provide quasi-universal road access are about USD 3 trillion. We estimate that the associated cumulative CO2 emissions from construction work and additional traffic until the end of the century amount to roughly 16 Gt. Our geographically explicit global analysis provides a starting point for refined regional studies and for the quantification of further environmental and social implications of SDG-9.1.