Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Saturation of the anomalous Hall effect at high magnetic fields in altermagnetic RuO2

2023, Tschirner, Teresa, Keßler, Philipp, Gonzalez Betancourt, Ruben Dario, Kotte, Tommy, Kriegner, Dominik, Büchner, Bernd, Dufouleur, Joseph, Kamp, Martin, Jovic, Vedran, Smejkal, Libor, Sinova, Jairo, Claessen, Ralph, Jungwirth, Tomas, Moser, Simon, Reichlova, Helena, Veyrat, Louis

Observations of the anomalous Hall effect in RuO2 and MnTe have demonstrated unconventional time-reversal symmetry breaking in the electronic structure of a recently identified new class of compensated collinear magnets, dubbed altermagnets. While in MnTe, the unconventional anomalous Hall signal accompanied by a vanishing magnetization is observable at remanence, the anomalous Hall effect in RuO2 is excluded by symmetry for the Néel vector pointing along the zero-field [001] easy-axis. Guided by a symmetry analysis and ab initio calculations, a field-induced reorientation of the Néel vector from the easy-axis toward the [110] hard-axis was used to demonstrate the anomalous Hall signal in this altermagnet. We confirm the existence of an anomalous Hall effect in our RuO2 thin-film samples, whose set of magnetic and magneto-transport characteristics is consistent with the earlier report. By performing our measurements at extreme magnetic fields up to 68 T, we reach saturation of the anomalous Hall signal at a field Hc ≃ 55 T that was inaccessible in earlier studies but is consistent with the expected Néel-vector reorientation field.

Loading...
Thumbnail Image
Item

The electronic structure of ϵ-Ga2O3

2019, Mulazzi, M., Reichmann, F., Becker, A., Klesse, W.M., Alippi, P., Fiorentini, V., Parisini, A., Bosi, M., Fornari, R.

The electronic structure of ε-Ga2O3 thin films has been investigated by ab initio calculations and photoemission spectroscopy with UV, soft, and hard X-rays to probe the surface and bulk properties. The latter measurements reveal a peculiar satellite structure in the Ga 2p core level spectrum, absent at the surface, and a core-level broadening that can be attributed to photoelectron recoil. The photoemission experiments indicate that the energy separation between the valence band and the Fermi level is about 4.4 eV, a valence band maximum at the Γ point and an effective mass of the highest lying bands of – 4.2 free electron masses. The value of the bandgap compares well with that obtained by optical experiments and with that obtained by calculations performed using a hybrid density-functional, which also reproduce well the dispersion and density of states.