Search Results

Now showing 1 - 10 of 114
Loading...
Thumbnail Image
Item

Effect of Alloying Elements in Melt Spun Mg-alloys for Hydrogen Storage

2016, Rozenberg, Silvia, Saporiti, Fabiana, Lang, Julien, Audebert, Fernando, Botta, Pablo, Stoica, Mihai, Huot, Jacques, Eckert, Jürgen

In this paper we report the effect of alloying elements on hydrogen storage properties of melt-spun Mg-based alloys. The base alloys Mg90Si10, Mg90Cu10, Mg65Cu35 (at%) were studied. We also investigated the effect of rare earths (using MM: mischmetal) and Al in Mg65Cu25Al10, Mg65Cu25MM10 and Mg65Cu10Al15MM10 alloys. All the melt-spun alloys without MM show a crystalline structure, and the Mg65Cu25MM10 and Mg65Cu10Al15MM10 alloys showed an amorphous and partially amorphous structure respectively. At 350˚C all the alloys had a crystalline structure during the hydrogen absorption-desorption tests. It was observed that Si and Cu in the binaries alloys hindered completely the activation of the hydrogen absorption. The partial substitution of Cu by MM or Al allowed activation. The combined substitution of Cu by MM and Al showed the best results with the fastest absorption and desorption kinetics, which suggests that this combination can be used for new Mg-alloys to improve hydrogen storage properties.

Loading...
Thumbnail Image
Item

Mixed dysprosium-lanthanide nitride clusterfullerenes DyM2N@C80-: I h and Dy2MN@C80- i h (M = Gd, Er, Tm, and Lu): Synthesis, molecular structure, and quantum motion of the endohedral nitrogen atom

2019, Schlesier, C., Liu, F., Dubrovin, V., Spree, L., Büchner, B., Avdoshenko, S.M., Popov, A.A.

Systematic exploration of the synthesis of mixed-metal Dy-M nitride clusterfullerenes (NCFs, M = Gd, Er, Tm, Lu) is performed, and the impact of the second metal on the relative yield is evaluated. We demonstrate that the ionic radius of the metal appears to be the main factor allowing explanation of the relative yields in Dy-M mixed-metal systems with M = Sc, Lu, Er, and Gd. At the same time, Dy-Tm NCFs show anomalously low yields, which is not consistent with the relatively small ionic radius of Tm3+ but can be explained by the high third ionization potential of Tm. Complete separation of Dy-Gd and Dy-Er, as well as partial separation of Dy-Lu M3N@C80 nitride clusterfullerenes, is accomplished by recycling HPLC. The molecular structures of DyGd2N@C80 and DyEr2N@C80 are analyzed by means of single-crystal X-ray diffraction. A remarkable ordering of mixed-metal nitride clusters is found despite similar size and electronic properties of the metals. Possible pyramidalization of the nitride clusters in these and other nitride clusterfullerenes is critically analyzed with the help of DFT calculations and reconstruction of the nitrogen inversion barrier in M3N@C80 molecules is performed. Although a double-well potential with a pyramidal cluster structure is found to be common for most of them, the small size of the inversion barrier often leads to an apparent planar structure of the cluster. This situation is found for those M3N@C80 molecules in which the energy of the lowest vibrational level exceeds that of the inversion barrier, including Dy3N@C80 and DyEr2N@C80. The genuine pyramidal structure can be observed by X-ray diffraction only when the lowest vibrational level is below the inversion barrier, such as those found in Gd3N@C80 and DyGd2N@C80. The quantum nature of molecular vibrations becomes especially apparent when the size of the inversion barrier is comparable to the energy of the lowest vibrational levels.

Loading...
Thumbnail Image
Item

Magnetic patterning of Co/Ni layered systems by plasma oxidation

2022, Anastaziak, Błażej, Andrzejewska, Weronika, Schmidt, Marek, Matczak, Michał, Soldatov, Ivan, Schäfer, Rudolf, Lewandowski, Mikołaj, Stobiecki, Feliks, Janzen, Christian, Ehresmann, Arno, Kuświk, Piotr

We studied the structural, chemical, and magnetic properties of Ti/Au/Co/Ni layered systems subjected to plasma oxidation. The process results in the formation of NiO at the expense of metallic Ni, as clearly evidenced by X-ray photoelectron spectroscopy, while not affecting the surface roughness and grain size of the Co/Ni bilayers. Since the decrease of the thickness of the Ni layer and the formation of NiO increase the perpendicular magnetic anisotropy, oxidation may be locally applied for magnetic patterning. Using this approach, we created 2D heterostructures characterized by different combinations of magnetic properties in areas modified by plasma oxidation and in the regions protected from oxidation. As plasma oxidation is an easy to use, low cost, and commonly utilized technique in industrial applications, it may constitute an improvement over other magnetic patterning methods.

Loading...
Thumbnail Image
Item

Colloidal PbS nanoplatelets synthesized via cation exchange for electronic applications

2019, Sonntag, Luisa, Shamraienko, Volodymyr, Fan, Xuelin, Samadi Khoshkhoo, Mahdi, Kneppe, David, Koitzsch, Andreas, Gemming, Thomas, Hiekel, Karl, Leo, Karl, Lesnyak, Vladimir, Eychmüller, Alexander

In this work, we present a new synthetic approach to colloidal PbS nanoplatelets (NPLs) utilizing a cation exchange (CE) strategy starting from CuS NPLs synthesized via the hot-injection method. Whereas the thickness of the resulting CuS NPLs was fixed at approx. 5 nm, the lateral size could be tuned by varying the reaction conditions, such as time from 6 to 16 h, the reaction temperature (120 °C, 140 °C), and the amount of copper precursor. In a second step, Cu+ cations were replaced with Pb2+ ions within the crystal lattice via CE. While the shape and the size of parental CuS platelets were preserved, the crystal structure was rearranged from hexagonal covellite to PbS galena, accompanied by the fragmentation of the monocrystalline phase into polycrystalline one. Afterwards a halide mediated ligand exchange (LE) was carried out in order to remove insulating oleic acid residues from the PbS NPL surface and to form stable dispersions in polar organic solvents enabling thin-film fabrication. Both CE and LE processes were monitored by several characterization techniques. Furthermore, we measured the electrical conductivity of the resulting PbS NPL-based films before and after LE and compared the processing in ambient to inert atmosphere. Finally, we fabricated field-effect transistors with an on/off ratio of up to 60 and linear charge carrier mobility for holes of 0.02 cm2 V−1 s−1.

Loading...
Thumbnail Image
Item

Ultrasmall SnO₂ nanocrystals: hot-bubbling synthesis, encapsulation in carbon layers and applications in high capacity Li-ion storage

2014, Ding, Liping, He, Shulian, Miao, Shiding, Jorgensen, Matthew R., Leubner, Susanne, Yan, Chenglin, Hickey, Stephen G., Eychmüller, Alexander, Xu, Jinzhang, Schmidt, Oliver G.

Ultrasmall SnO2 nanocrystals as anode materials for lithium-ion batteries (LIBs) have been synthesized by bubbling an oxidizing gas into hot surfactant solutions containing Sn-oleate complexes. Annealing of the particles in N2 carbonifies the densely packed surface capping ligands resulting in carbon encapsulated SnO2 nanoparticles (SnO2/C). Carbon encapsulation can effectively buffer the volume changes during the lithiation/delithiation process. The assembled SnO2/C thus deliver extraordinarily high reversible capacity of 908 mA·h·g−1 at 0.5 C as well as excellent cycling performance in the LIBs. This method demonstrates the great potential of SnO2/C nanoparticles for the design of high power LIBs.

Loading...
Thumbnail Image
Item

Structure-property relationship of Co 2 MnSi thin films in response to He + -irradiation

2019, Hammerath, Franziska, Bali, Rantej, Hübner, René, Brandt, Mira R. D., Rodan, Steven, Potzger, Kay, Böttger, Roman, Sakuraba, Yuya, Wurmehl, Sabine

We investigated the structure-property relationship of Co2MnSi Heusler thin films upon the irradiation with He+ ions. The variation of the crystal structure with increasing ion fluence has been probed using nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM), and associated with the corresponding changes of the magnetic behavior. A decrease of both the structural order and the moment in saturation is observed. Specifically, we detect a direct transition from a highly L21-ordered to a fully A2-disordered structure type and quantify the evolution of the A2 structural contribution as a function of ion fluence. Complementary TEM analysis reveals a spatially-resolved distribution of the L21 and A2 phases showing that the A2 disorder starts at the upper part of the films. The structural degradation in turn leads to a decreasing magnetic moment in saturation in response to the increasing fluence.

Loading...
Thumbnail Image
Item

Laser additive manufacturing of Miura-origami tube inspired quasi-zero stiffness metamaterial with prominent longitudinal wave propagation

2023, Wan, Haoran, Chen, Hongyu, Wang, Yonggang, Fang, Xiang, Liu, Yang, Kosiba, Konrad

Origami metamaterials have become frontiers of research in many disciplines due to their infinite design space, simple size variation, and topologically variable properties. In this study, a novel metamaterial inspired by Miura-origami tubes with a complex quasi-zero-stiffness (QZS) structure was fabricated via laser powder bed fusion (LPBF). The unit of the QZS metamaterial consists of a two-layer quadrilateral frame and two vertical springs attached to its diagonal points. The geometric accuracy, densification level and mechanical properties of the QZS parts fabricated at various processing conditions were investigated and the optimised processing parameters were determined. The displacement response of the QZS parts was analysed by experiments in conjunction with simulation analysis. The results show that the LPBF-fabricated QZS metamaterials form four extra-wide longitudinal wave band gaps under low frequencies from 660 Hz to 2500 Hz. The proposed LPBF-fabricated QZS metamaterial shows great potential in impeding the longitudinal vibration of engineering structures.

Loading...
Thumbnail Image
Item

Strong magnetic frustration and anti-site disorder causing spin-glass behavior in honeycomb Li2RhO3

2015, Katukuri, Vamshi M., Nishimoto, Satoshi, Rousochatzakis, Ioannis, Stoll, Hermann, van den Brink, Jeroen, Hozoi, Liviu

With large spin-orbit coupling, the electron configuration in d-metal oxides is prone to highly anisotropic exchange interactions and exotic magnetic properties. In 5d5 iridates, given the existing variety of crystal structures, the magnetic anisotropy can be tuned from antisymmetric to symmetric Kitaev-type, with interaction strengths that outsize the isotropic terms. By many-body electronic-structure calculations we here address the nature of the magnetic exchange and the intriguing spin-glass behavior of Li2RhO3, a 4d5 honeycomb oxide. For pristine crystals without Rh-Li site inversion, we predict a dimerized ground state as in the isostructural 5d5 iridate Li2IrO3, with triplet spin dimers effectively placed on a frustrated triangular lattice. With Rh-Li anti-site disorder, we explain the observed spin-glass phase as a superposition of different, nearly degenerate symmetry-broken configurations.

Loading...
Thumbnail Image
Item

Cryogenic-temperature-induced structural transformation of a metallic glass

2016-11-30, Bian, Xilei, Wang, Gang, Wang, Qing, Sun, Baoan, Hussain, Ishtiaq, Zhai, Qijie, Mattern, Norbert, Bednarčík, Jozef, Eckert, Jürgen

The plasticity of metallic glasses depends largely on the atomic-scale structure. However, the details of the atomic-scale structure, which are responsible for their properties, remain to be clarified. In this study, in-situ high-energy synchrotron X-ray diffraction and strain-rate jump compression tests at different cryogenic temperatures were carried out. We show that the activation volume of flow units linearly depends on temperature in the non-serrated flow regime. A plausible atomic deformation mechanism is proposed, considering that the activated flow units mediating the plastic flow originate from the medium-range order and transit to the short-range order with decreasing temperature.

Loading...
Thumbnail Image
Item

Human spermbots for patient-representative 3D ovarian cancer cell treatment

2020, Xu, Haifeng, Medina-Sánchez, Mariana, Zhang, Wunan, Seaton, Melanie P. H., Brison, Daniel R., Edmondson, Richard J., Taylor, Stephen S., Nelson, Louisa, Zeng, Kang, Bagley, Steven, Ribeiro, Carla, Restrepo, Lina P., Lucena, Elkin, Schmidt, Christine K., Schmidt, Oliver G.

Cellular micromotors are attractive for locally delivering high concentrations of drug, and targeting hard-to-reach disease sites such as cervical cancer and early ovarian cancer lesions by non-invasive means. Spermatozoa are highly efficient micromotors perfectly adapted to traveling up the female reproductive system. Indeed, bovine sperm-based micromotors have shown potential to carry drugs toward gynecological cancers. However, due to major differences in the molecular make-up of bovine and human sperm, a key translational bottleneck for bringing this technology closer to the clinic is to transfer this concept to human material. Here, we successfully load human sperm with Doxorubicin (DOX) and perform treatment of 3D cervical cancer and patient-representative ovarian cancer cell cultures, resulting in strong anticancer cell effects. Additionally, we define the subcellular localization of the chemotherapeutic drug within human sperm, using high-resolution optical microscopy. We also assess drug effects on sperm motility and viability over time, employing sperm samples from healthy donors as well as assisted reproduction patients. Finally, we demonstrate guidance and release of human drug-loaded sperm onto cancer tissues using magnetic microcaps, and show the sperm microcap loaded with a second anticancer drug, camptothecin (CPT), which unlike DOX is not suitable for directly loading into sperm due to its hydrophobic nature. This co-drug delivery approach opens up novel targeted combinatorial drug therapies for future applications. © 2020 The Royal Society of Chemistry.