Search Results

Now showing 1 - 10 of 26
Loading...
Thumbnail Image
Item

Dislocations in ceramic electrolytes for solid-state Li batteries

2021, Porz, L., Knez, D., Scherer, M., Ganschow, S., Kothleitner, G., Rettenwander, D.

High power solid-state Li batteries (SSLB) are hindered by the formation of dendrite-like structures at high current rates. Hence, new design principles are needed to overcome this limitation. By introducing dislocations, we aim to tailor mechanical properties in order to withstand the mechanical stress leading to Li penetration and resulting in a short circuit by a crack-opening mechanism. Such defect engineering, furthermore, appears to enable whisker-like Li metal electrodes for high-rate Li plating. To reach these goals, the challenge of introducing dislocations into ceramic electrolytes needs to be addressed which requires to establish fundamental understanding of the mechanics of dislocations in the particular ceramics. Here we evaluate uniaxial deformation at elevated temperatures as one possible approach to introduce dislocations. By using hot-pressed pellets and single crystals grown by Czochralski method of Li6.4La3Zr1.4Ta0.6O12 garnets as a model system the plastic deformation by more than 10% is demonstrated. While conclusions on the predominating deformation mechanism remain challenging, analysis of activation energy, activation volume, diffusion creep, and the defect structure potentially point to a deformation mechanism involving dislocations. These parameters allow identification of a process window and are a key step on the road of making dislocations available as a design element for SSLB.

Loading...
Thumbnail Image
Item

Morpho-molecular signal correlation between optical coherence tomography and Raman spectroscopy for superior image interpretation and clinical diagnosis

2021, Schie, Iwan W., Placzek, Fabian, Knorr, Florian, Cordero, Eliana, Wurster, Lara M., Hermann, Gregers G., Mogensen, Karin, Hasselager, Thomas, Drexler, Wolfgang, Popp, Jürgen, Leitgeb, Rainer A.

The combination of manifold optical imaging modalities resulting in multimodal optical systems allows to discover a larger number of biomarkers than using a single modality. The goal of multimodal imaging systems is to increase the diagnostic performance through the combination of complementary modalities, e.g. optical coherence tomography (OCT) and Raman spectroscopy (RS). The physical signal origins of OCT and RS are distinctly different, i.e. in OCT it is elastic back scattering of photons, due to a change in refractive index, while in RS it is the inelastic scattering between photons and molecules. Despite those diverse characteristics both modalities are also linked via scattering properties and molecular composition of tissue. Here, we investigate for the first time the relation of co-registered OCT and RS signals of human bladder tissue, to demonstrate that the signals of these complementary modalities are inherently intertwined, enabling a direct but more importantly improved interpretation and better understanding of the other modality. This work demonstrates that the benefit for using two complementary imaging approaches is, not only the increased diagnostic value, but the increased information and better understanding of the signal origins of both modalities. This evaluation confirms the advantages for using multimodal imaging systems and also paves the way for significant further improved understanding and clinically interpretation of both modalities in the future.

Loading...
Thumbnail Image
Item

Generation and collective interaction of giant magnetic dipoles in laser cluster plasma

2021, Andreev, A., Platonov, K., Lécz, Z., Hafz, N.

Interaction of circularly polarized laser pulses with spherical nano-droplets generates nanometer-size magnets with lifetime on the order of hundreds of femtoseconds. Such magnetic dipoles are close enough in a cluster target and magnetic interaction takes place. We investigate such system of several magnetic dipoles and describe their rotation in the framework of Lagrangian formalism. The semi-analytical results are compared to particle-in-cell simulations, which confirm the theoretically obtained terrahertz frequency of the dipole oscillation.

Loading...
Thumbnail Image
Item

Spatial segregation of mixed-sized counterions in dendritic polyelectrolytes

2021, Kłos, J.S., Paturej, J.

Langevin dynamics simulations are utilized to study the structure of a dendritic polyelectrolyte embedded in two component mixtures comprised of conventional (small) and bulky counterions. We vary two parameters that trigger conformational properties of the dendrimer: the reduced Bjerrum length, λ∗B, which controls the strength of electrostatic interactions and the number fraction of the bulky counterions, fb, which impacts on their steric repulsion. We find that the interplay between the electrostatic and the counterion excluded volume interactions affects the swelling behavior of the molecule. As compared to its neutral counterpart, for weak electrostatic couplings the charged dendrimer exists in swollen conformations whose size remains unaffected by fb. For intermediate couplings, the absorption of counterions into the pervaded volume of the dendrimer starts to influence its conformation. Here, the swelling factor exhibits a maximum which can be shifted by increasing fb. For strong electrostatic couplings the dendrimer deswells correspondingly to fb. In this regime a spatial separation of the counterions into core–shell microstructures is observed. The core of the dendrimer cage is preferentially occupied by the conventional ions, whereas its periphery contains the bulky counterions.

Loading...
Thumbnail Image
Item

Deep learning-based classification of blue light cystoscopy imaging during transurethral resection of bladder tumors

2021, Ali, Nairveen, Bolenz, Christian, Todenhöfer, Tilman, Stenzel, Arnulf, Deetmar, Peer, Kriegmair, Martin, Knoll, Thomas, Porubsky, Stefan, Hartmann, Arndt, Popp, Jürgen, Kriegmair, Maximilian C., Bocklitz, Thomas

Bladder cancer is one of the top 10 frequently occurring cancers and leads to most cancer deaths worldwide. Recently, blue light (BL) cystoscopy-based photodynamic diagnosis was introduced as a unique technology to enhance the detection of bladder cancer, particularly for the detection of flat and small lesions. Here, we aim to demonstrate a BL image-based artificial intelligence (AI) diagnostic platform using 216 BL images, that were acquired in four different urological departments and pathologically identified with respect to cancer malignancy, invasiveness, and grading. Thereafter, four pre-trained convolution neural networks were utilized to predict image malignancy, invasiveness, and grading. The results indicated that the classification sensitivity and specificity of malignant lesions are 95.77% and 87.84%, while the mean sensitivity and mean specificity of tumor invasiveness are 88% and 96.56%, respectively. This small multicenter clinical study clearly shows the potential of AI based classification of BL images allowing for better treatment decisions and potentially higher detection rates.

Loading...
Thumbnail Image
Item

Direct measurement of Coulomb-laser coupling

2021, Azoury, Doron, Krüger, Michael, Bruner, Barry D., Smirnova, Olga, Dudovich, Nirit

The Coulomb interaction between a photoelectron and its parent ion plays an important role in a large range of light-matter interactions. In this paper we obtain a direct insight into the Coulomb interaction and resolve, for the first time, the phase accumulated by the laser-driven electron as it interacts with the Coulomb potential. Applying extreme-ultraviolet interferometry enables us to resolve this phase with attosecond precision over a large energy range. Our findings identify a strong laser-Coulomb coupling, going beyond the standard recollision picture within the strong-field framework. Transformation of the results to the time domain reveals Coulomb-induced delays of the electrons along their trajectories, which vary by tens of attoseconds with the laser field intensity.

Loading...
Thumbnail Image
Item

In situ identification and G4-PPI-His-Mal-dendrimer-induced reduction of early-stage amyloid aggregates in Alzheimer’s disease transgenic mice using synchrotron-based infrared imaging

2021, Benseny-Cases, Núria, Álvarez-Marimon, Elena, Aso, Ester, Carmona, Margarita, Klementieva, Oxana, Appelhans, Dietmar, Ferrer, Isidre, Cladera, Josep

Amyloid plaques composed of Aβ amyloid peptides and neurofibrillary tangles are a pathological hallmark of Alzheimer Disease. In situ identification of early-stage amyloid aggregates in Alzheimer’s disease is relevant for their importance as potential targets for effective drugs. Synchrotron-based infrared imaging is here used to identify early-stage oligomeric/granular aggregated amyloid species in situ in the brain of APP/PS1 transgenic mice for the first time. Also, APP/PS1 mice show fibrillary aggregates at 6 and 12 months. A significant decreased burden of early-stage aggregates and fibrillary aggregates is obtained following treatment with poly(propylene imine) dendrimers with histidine-maltose shell (a neurodegenerative protector) in 6-month-old APP/PS1 mice, thus demonstrating their putative therapeutic properties of in AD models. Identification, localization, and characterization using infrared imaging of these non-fibrillary species in the cerebral cortex at early stages of AD progression in transgenic mice point to their relevance as putative pharmacological targets. No less important, early detection of these structures may be useful in the search for markers for non-invasive diagnostic techniques.

Loading...
Thumbnail Image
Item

Templating the morphology of soft microgel assemblies using a nanolithographic 3D-printed membrane

2021, Linkhorst, John, Lölsberg, Jonas, Thill, Sebastian, Lohaus, Johannes, Lüken, Arne, Naegele, Gerhard, Wessling, Matthias

Filter cake formation is the predominant phenomenon limiting the filtration performance of membrane separation processes. However, the filter cake’s behavior at the particle scale, which determines its overall cake behavior, has only recently come into the focus of scientists, leaving open questions about its formation and filtration behavior. The present study contributes to the fundamental understanding of soft filter cakes by analyzing the influence of the porous membrane’s morphology on crystal formation and the compaction behavior of soft filter cakes under filtration conditions. Microfluidic chips with nanolithographic imprinted filter templates were used to trigger the formation of crystalline colloidal filter cakes formed by soft microgels. The soft filter cakes were observed via confocal laser scanning microscopy (CLSM) under dead-end filtration conditions. Colloidal crystal formation in the cake, as well as their compaction behavior, were analyzed by optical visualization and pressure data. For the first time, we show that exposing the soft cake to a crystalline filter template promotes the formation of colloidal crystallites and that soft cakes experience gradient compression during filtration.

Loading...
Thumbnail Image
Item

Skin tolerant inactivation of multiresistant pathogens using far-UVC LEDs

2021, Glaab, Johannes, Lobo-Ploch, Neysha, Cho, Hyun Kyong, Filler, Thomas, Gundlach, Heiko, Guttmann, Martin, Hagedorn, Sylvia, Lohan, Silke B., Mehnke, Frank, Schleusener, Johannes, Sicher, Claudia, Sulmoni, Luca, Wernicke, Tim, Wittenbecher, Lucas, Woggon, Ulrike, Zwicker, Paula, Kramer, Axel, Meinke, Martina C., Kneissl, Michael, Weyers, Markus, Winterwerber, Ulrike, Einfeldt, Sven

Multiresistant pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) cause serious postoperative infections. A skin tolerant far-UVC (< 240 nm) irradiation system for their inactivation is presented here. It uses UVC LEDs in combination with a spectral filter and provides a peak wavelength of 233 nm, with a full width at half maximum of 12 nm, and an irradiance of 44 µW/cm2. MRSA bacteria in different concentrations on blood agar plates were inactivated with irradiation doses in the range of 15–40 mJ/cm2. Porcine skin irradiated with a dose of 40 mJ/cm2 at 233 nm showed only 3.7% CPD and 2.3% 6-4PP DNA damage. Corresponding irradiation at 254 nm caused 11–14 times higher damage. Thus, the skin damage caused by the disinfectant doses is so small that it can be expected to be compensated by the skin's natural repair mechanisms. LED-based far-UVC lamps could therefore soon be used in everyday clinical practice to eradicate multiresistant pathogens directly on humans.

Loading...
Thumbnail Image
Item

Serum lactate dehydrogenase activities as systems biomarkers for 48 types of human diseases

2021, Wu, Yuling, Lu, Caixia, Pan, Nana, Zhang, Meng, An, Yi, Xu, Mengyuan, Zhang, Lijuan, Guo, Yachong, Tan, Lijuan

Most human diseases are systems diseases, and systems biomarkers are better fitted for diagnostic, prognostic, and treatment monitoring purposes. To search for systems biomarker candidates, lactate dehydrogenase (LDH), a housekeeping protein expressed in all living cells, was investigated. To this end, we analyzed the serum LDH activities from 172,933 patients with 48 clinically defined diseases and 9528 healthy individuals. Based on the median values, we found that 46 out of 48 diseases, leading by acute myocardial infarction, had significantly increased (p < 0.001), whereas gout and cerebral ischemia had significantly decreased (p < 0.001) serum LDH activities compared to the healthy control. Remarkably, hepatic encephalopathy and lung fibrosis had the highest AUCs (0.89, 0.80), sensitivities (0.73, 0.56), and specificities (0.90, 0.91) among 48 human diseases. Statistical analysis revealed that over-downregulation of serum LDH activities was associated with blood-related cancers and diseases. LDH activities were potential systems biomarker candidates (AUCs > 0.8) for hepatic encephalopathy and lung fibrosis.