Search Results

Now showing 1 - 10 of 19
  • Item
    Cryogel-supported stem cell factory for customized sustained release of bispecific antibodies for cancer immunotherapy
    (London : Nature Publishing Group, 2017) Aliperta, Roberta; Welzel, Petra B.; Bergmann, Ralf; Freudenberg, Uwe; Berndt, Nicole; Feldmann, Anja; Arndt, Claudia; Koristka, Stefanie; Stanzione, Marcello; Cartellieri, Marc; Ehninger, Armin; Ehninger, Gerhard; Werner, Carsten; Pietzsch, Jens; Steinbach, Jörg; Bornhäuser, Martin; Bachmann, Michael P.
    Combining stem cells with biomaterial scaffolds provides a promising strategy for the development of drug delivery systems. Here we propose an innovative immunotherapeutic organoid by housing human mesenchymal stromal cells (MSCs), gene-modified for the secretion of an anti-CD33-anti-CD3 bispecific antibody (bsAb), in a small biocompatible star-shaped poly(ethylene glycol)-heparin cryogel scaffold as a transplantable and low invasive therapeutic machinery for the treatment of acute myeloid leukemia (AML). The macroporous biohybrid cryogel platform displays effectiveness in supporting proliferation and survival of bsAb-releasing-MSCs overtime in vitro and in vivo, avoiding cell loss and ensuring a constant release of sustained and detectable levels of bsAb capable of triggering T-cell-mediated anti-tumor responses and a rapid regression of CD33 + AML blasts. This therapeutic device results as a promising and safe alternative to the continuous administration of short-lived immunoagents and paves the way for effective bsAb-based therapeutic strategies for future tumor treatments.
  • Item
    Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: A shared electromagnetic origin
    (London : Nature Publishing Group, 2017) Rudenko, Anton; Colombier, Jean-Philippe; Höhm, Sandra; Rosenfeld, Arkadi; Krüger, Jörg; Bonse, Jörn; Itina, Tatiana E.
    Periodic self-organization of matter beyond the diffraction limit is a puzzling phenomenon, typical both for surface and bulk ultrashort laser processing. Here we compare the mechanisms of periodic nanostructure formation on the surface and in the bulk of fused silica. We show that volume nanogratings and surface nanoripples having subwavelength periodicity and oriented perpendicular to the laser polarization share the same electromagnetic origin. The nanostructure orientation is defined by the near-field local enhancement in the vicinity of the inhomogeneous scattering centers. The periodicity is attributed to the coherent superposition of the waves scattered at inhomogeneities. Numerical calculations also support the multipulse accumulation nature of nanogratings formation on the surface and inside fused silica. Laser surface processing by multiple laser pulses promotes the transition from the high spatial frequency perpendicularly oriented nanoripples to the low spatial frequency ripples, parallel or perpendicular to the laser polarization. The latter structures also share the electromagnetic origin, but are related to the incident field interference with the scattered far-field of rough non-metallic or transiently metallic surfaces. The characteristic ripple appearances are predicted by combined electromagnetic and thermo-mechanical approaches and supported by SEM images of the final surface morphology and by time-resolved pump-probe diffraction measurements.
  • Item
    Zebrafish In-Vivo Screening for Compounds Amplifying Hematopoietic Stem and Progenitor Cells: - Preclinical Validation in Human CD34+ Stem and Progenitor Cells
    (London : Nature Publishing Group, 2017) Arulmozhivarman, Guruchandar; Kräter, Martin; Wobus, Manja; Friedrichs, Jens; Bejestani, Elham Pishali; Müller, Katrin; Lambert, Katrin; Alexopoulou, Dimitra; Dahl, Andreas; Stöter, Martin; Bickle, Marc; Shayegi, Nona; Hampe, Jochen; Stölzel, Friedrich; Brand, Michael; von Bonin, Malte; Bornhäuser, Martin
    The identification of small molecules that either increase the number and/or enhance the activity of human hematopoietic stem and progenitor cells (hHSPCs) during ex vivo expansion remains challenging. We used an unbiased in vivo chemical screen in a transgenic (c-myb:EGFP) zebrafish embryo model and identified histone deacetylase inhibitors (HDACIs), particularly valproic acid (VPA), as significant enhancers of the number of phenotypic HSPCs, both in vivo and during ex vivo expansion. The long-term functionality of these expanded hHSPCs was verified in a xenotransplantation model with NSG mice. Interestingly, VPA increased CD34+ cell adhesion to primary mesenchymal stromal cells and reduced their in vitro chemokine-mediated migration capacity. In line with this, VPA-treated human CD34+ cells showed reduced homing and early engraftment in a xenograft transplant model, but retained their long-term engraftment potential in vivo, and maintained their differentiation ability both in vitro and in vivo. In summary, our data demonstrate that certain HDACIs lead to a net expansion of hHSPCs with retained long-term engraftment potential and could be further explored as candidate compounds to amplify ex-vivo engineered peripheral blood stem cells.
  • Item
    Advanced-Retarded Differential Equations in Quantum Photonic Systems
    (London : Nature Publishing Group, 2017) Alvarez-Rodriguez, Unai; Perez-Leija, Armando; Egusquiza, Iñigo L.; Gräfe, Markus; Sanz, Mikel; Lamata, Lucas; Szameit, Alexander; Solano, Enrique
    We propose the realization of photonic circuits whose dynamics is governed by advanced-retarded differential equations. Beyond their mathematical interest, these photonic configurations enable the implementation of quantum feedback and feedforward without requiring any intermediate measurement. We show how this protocol can be applied to implement interesting delay effects in the quantum regime, as well as in the classical limit. Our results elucidate the potential of the protocol as a promising route towards integrated quantum control systems on a chip.
  • Item
    Prospects of target nanostructuring for laser proton acceleration
    (London : Nature Publishing Group, 2017) Lübcke, Andrea; Andreev, Alexander A.; Höhm, Sandra; Grunwald, Ruediger; Ehrentraut, Lutz; Schnürer, Matthias
    In laser-based proton acceleration, nanostructured targets hold the promise to allow for significantly boosted proton energies due to strong increase of laser absorption. We used laser-induced periodic surface structures generated in-situ as a very fast and economic way to produce nanostructured targets capable of high-repetition rate applications. Both in experiment and theory, we investigate the impact of nanostructuring on the proton spectrum for different laser-plasma conditions. Our experimental data show that the nanostructures lead to a significant enhancement of absorption over the entire range of laser plasma conditions investigated. At conditions that do not allow for efficient laser absorption by plane targets, i.e. too steep plasma gradients, nanostructuring is found to significantly enhance the proton cutoff energy and conversion efficiency. In contrast, if the plasma gradient is optimized for laser absorption of the plane target, the nanostructure-induced absorption increase is not reflected in higher cutoff energies. Both, simulation and experiment point towards the energy transfer from the laser to the hot electrons as bottleneck.
  • Item
    Solid-state 31P and 1H chemical MR micro-imaging of hard tissues and biomaterials with magic angle spinning at very high magnetic field
    (London : Nature Publishing Group, 2017) Yon, Maxime; Sarou-Kanian, Vincent; Scheler, Ulrich; Bouler, Jean-Michel; Bujoli, Bruno; Massiot, Dominique; Fayon, Franck
    In this work, we show that it is possible to overcome the limitations of solid-state MRI for rigid tissues due to large line broadening and short dephasing times by combining Magic Angle Spinning (MAS) with rotating pulsed field gradients. This allows recording ex vivo 31P 3D and 2D slice-selected images of rigid tissues and related biomaterials at very high magnetic field, with greatly improved signal to noise ratio and spatial resolution when compared to static conditions. Cross-polarization is employed to enhance contrast and to further depict spatially localized chemical variations in reduced experimental time. In these materials, very high magnetic field and moderate MAS spinning rate directly provide high spectral resolution and enable the use of frequency selective excitation schemes for chemically selective imaging. These new possibilities are exemplified with experiments probing selectively the 3D spatial distribution of apatitic hydroxyl protons inside a mouse tooth with attached jaw bone with a nominal isotropic resolution nearing 100 μm.
  • Item
    Transverse Coherence Limited Coherent Diffraction Imaging using a Molybdenum Soft X-ray Laser Pumped at Moderate Pump Energies
    (London : Nature Publishing Group, 2017) Zürch, M.; Jung, R.; Späth, C.; Tümmler, J.; Guggenmos, A.; Attwood, D.; Kleineberg, U.; Stiel, H.; Spielmann, C.
    Coherent diffraction imaging (CDI) in the extreme ultraviolet has become an important tool for nanoscale investigations. Laser-driven high harmonic generation (HHG) sources allow for lab scale applications such as cancer cell classification and phase-resolved surface studies. HHG sources exhibit excellent coherence but limited photon flux due poor conversion efficiency. In contrast, table-top soft X-ray lasers (SXRL) feature excellent temporal coherence and extraordinary high flux at limited transverse coherence. Here, the performance of a SXRL pumped at moderate pump energies is evaluated for CDI and compared to a HHG source. For CDI, a lower bound for the required mutual coherence factor of |μ 12| ≥ 0.75 is found by comparing a reconstruction with fixed support to a conventional characterization using double slits. A comparison of the captured diffraction signals suggests that SXRLs have the potential for imaging micron scale objects with sub-20 nm resolution in orders of magnitude shorter integration time compared to a conventional HHG source. Here, the low transverse coherence diameter limits the resolution to approximately 180 nm. The extraordinary high photon flux per laser shot, scalability towards higher repetition rate and capability of seeding with a high harmonic source opens a route for higher performance nanoscale imaging systems based on SXRLs.
  • Item
    Correlated electronic decay in expanding clusters triggered by intense XUV pulses from a Free-Electron-Laser
    (London : Nature Publishing Group, 2017) Oelze, Tim; Schütte, Bernd; Müller, Maria; Müller, Jan P.; Wieland, Marek; Frühling, Ulrike; Drescher, Markus; Al-Shemmary, Alaa; Golz, Torsten; Stojanovic, Nikola; Krikunova, Maria
    Irradiation of nanoscale clusters and large molecules with intense laser pulses transforms them into highly-excited non- equilibrium states. The dynamics of intense laser-cluster interaction is encoded in electron kinetic energy spectra, which contain signatures of direct photoelectron emission as well as emission of thermalized nanoplasma electrons. In this work we report on a so far not observed spectrally narrow bound state signature in the electron kinetic energy spectra from mixed Xe core - Ar shell clusters ionized by intense extreme-ultraviolet (XUV) pulses from a free-electron-laser. This signature is attributed to the correlated electronic decay (CED) process, in which an excited atom relaxes and the excess energy is used to ionize the same or another excited atom or a nanoplasma electron. By applying the terahertz field streaking principle we demonstrate that CED-electrons are emitted at least a few picoseconds after the ionizing XUV pulse has ended. Following the recent finding of CED in clusters ionized by intense near-infrared laser pulses, our observation of CED in the XUV range suggests that this process is of general relevance for the relaxation dynamics in laser produced nanoplasmas.
  • Item
    Population density gratings induced by few-cycle optical pulses in a resonant medium
    (London : Nature Publishing Group, 2017) Arkhipov, R.M.; Pakhomov, A.V.; Arkhipov, M.V.; Babushkin, I.; Demircan, A.; Morgner, U.; Rosanov, N.N.
    Creation, erasing and ultrafast control of population density gratings using few-cycle optical pulses coherently interacting with resonant medium is discussed. In contrast to the commonly used schemes, here the pulses do not need to overlap in the medium, interaction between the pulses is mediated by excitation of polarization waves. We investigate the details of the dynamics arising in such ultrashort pulse scheme and develop an analytical theory demonstrating the importance of the phase memory effects in the dynamics.
  • Item
    Bone marrow niche-mimetics modulate HSPC function via integrin signaling
    (London : Nature Publishing Group, 2017) Kräter, Martin; Jacobi, Angela; Otto, Oliver; Tietze, Stefanie; Müller, Katrin; Poitz, David M.; Palm, Sandra; Zinna, Valentina M.; Biehain, Ulrike; Wobus, Manja; Chavakis, Triantafyllos; Werner, Carsten; Guck, Jochen; Bornhauser, Martin
    The bone marrow (BM) microenvironment provides critical physical cues for hematopoietic stem and progenitor cell (HSPC) maintenance and fate decision mediated by cell-matrix interactions. However, the mechanisms underlying matrix communication and signal transduction are less well understood. Contrary, stem cell culture is mainly facilitated in suspension cultures. Here, we used bone marrow-mimetic decellularized extracellular matrix (ECM) scaffolds derived from mesenchymal stromal cells (MSCs) to study HSPC-ECM interaction. Seeding freshly isolated HSPCs adherent (AT) and non-adherent (SN) cells were found. We detected enhanced expansion and active migration of AT-cells mediated by ECM incorporated stromal derived factor one. Probing cell mechanics, AT-cells displayed naïve cell deformation compared to SN-cells indicating physical recognition of ECM material properties by focal adhesion. Integrin αIIb (CD41), αV (CD51) and β3 (CD61) were found to be induced. Signaling focal contacts via ITGβ3 were identified to facilitate cell adhesion, migration and mediate ECM-physical cues to modulate HSPC function.