Search Results

Now showing 1 - 5 of 5
  • Item
    Mixed dysprosium-lanthanide nitride clusterfullerenes DyM2N@C80-: I h and Dy2MN@C80- i h (M = Gd, Er, Tm, and Lu): Synthesis, molecular structure, and quantum motion of the endohedral nitrogen atom
    (Cambridge : RSC Publ., 2019) Schlesier, C.; Liu, F.; Dubrovin, V.; Spree, L.; Büchner, B.; Avdoshenko, S.M.; Popov, A.A.
    Systematic exploration of the synthesis of mixed-metal Dy-M nitride clusterfullerenes (NCFs, M = Gd, Er, Tm, Lu) is performed, and the impact of the second metal on the relative yield is evaluated. We demonstrate that the ionic radius of the metal appears to be the main factor allowing explanation of the relative yields in Dy-M mixed-metal systems with M = Sc, Lu, Er, and Gd. At the same time, Dy-Tm NCFs show anomalously low yields, which is not consistent with the relatively small ionic radius of Tm3+ but can be explained by the high third ionization potential of Tm. Complete separation of Dy-Gd and Dy-Er, as well as partial separation of Dy-Lu M3N@C80 nitride clusterfullerenes, is accomplished by recycling HPLC. The molecular structures of DyGd2N@C80 and DyEr2N@C80 are analyzed by means of single-crystal X-ray diffraction. A remarkable ordering of mixed-metal nitride clusters is found despite similar size and electronic properties of the metals. Possible pyramidalization of the nitride clusters in these and other nitride clusterfullerenes is critically analyzed with the help of DFT calculations and reconstruction of the nitrogen inversion barrier in M3N@C80 molecules is performed. Although a double-well potential with a pyramidal cluster structure is found to be common for most of them, the small size of the inversion barrier often leads to an apparent planar structure of the cluster. This situation is found for those M3N@C80 molecules in which the energy of the lowest vibrational level exceeds that of the inversion barrier, including Dy3N@C80 and DyEr2N@C80. The genuine pyramidal structure can be observed by X-ray diffraction only when the lowest vibrational level is below the inversion barrier, such as those found in Gd3N@C80 and DyGd2N@C80. The quantum nature of molecular vibrations becomes especially apparent when the size of the inversion barrier is comparable to the energy of the lowest vibrational levels.
  • Item
    Influence of 4f filling on electronic and magnetic properties of rare earth-Au surface compounds
    (Cambridge : RSC Publ., 2020) Fernandez, L.; Blanco-Rey, M.; Castrillo-Bodero, R.; Ilyn, M.; Ali, K.; Turco, E.; Corso, M.; Ormaza, M.; Gargiani, P.; Valbuena, M.A.; Mugarza, A.; Moras, P.; Sheverdyaeva, P.M.; Kundu, Asish K.; Jugovac, M.; Laubschat, C.; Ortega, J.E.; Schiller, F.
    One-atom-thick rare-earth/noble metal (RE-NM) compounds are attractive materials to investigate two-dimensional magnetism, since they are easy to synthesize into a common RE-NM2 structure with high crystal perfection. Here we perform a comparative study of the GdAu2, HoAu2, and YbAu2 monolayer compounds grown on Au(111). We find the same atomic lattice quality and moiré superlattice periodicity in the three cases, but different electronic properties and magnetism. The YbAu2 monolayer reveals the characteristic electronic signatures of a mixed-valence configuration in the Yb atom. In contrast, GdAu2 and HoAu2 show the trivalent character of the rare-earth and ferromagnetic transitions below 22 K. Yet, the GdAu2 monolayer has an in-plane magnetic easy-axis, versus the out-of-plane one in HoAu2. The electronic bands of the two trivalent compounds are very similar, while the divalent YbAu2 monolayer exhibits different band features. In the latter, a strong 4f-5d hybridization is manifested in neatly resolved avoided crossings near the Fermi level. First principles theory points to a residual presence of empty 4f states, explaining the fluctuating valence of Yb in the YbAu2 monolayer. © The Royal Society of Chemistry.
  • Item
    Refractory metal-based ohmic contacts on β-Ga2O3 using TiW
    (Melville, NY : AIP Publ., 2022) Tetzner, Kornelius; Schewski, Robert; Popp, Andreas; Anooz, Saud Bin; Chou, Ta-Shun; Ostermay, Ina; Kirmse, Holm; Würfl, Joachim
    The present work investigates the use of the refractory metal alloy TiW as a possible candidate for the realization of ohmic contacts to the ultrawide bandgap semiconductor β-Ga2O3. Ohmic contact properties were analyzed by transfer length measurements of TiW contacts annealed at temperatures between 400 and 900 °C. Optimum contact properties with a contact resistance down to 1.5 × 10-5 ω cm2 were achieved after annealing at 700 °C in nitrogen on highly doped β-Ga2O3. However, a significant contact resistance increase was observed at annealing temperatures above 700 °C. Cross-sectional analyses of the contacts using scanning transmission electron microscopy revealed the formation of a TiOx interfacial layer of 3-5 nm between TiW and β-Ga2O3. This interlayer features an amorphous structure and most probably possesses a high amount of vacancies and/or Ga impurities supporting charge carrier injection. Upon annealing at temperatures of 900 °C, the interlayer increases in thickness up to 15 nm, featuring crystalline-like properties, suggesting the formation of rutile TiO2. Although severe morphological changes at higher annealing temperatures were also verified by atomic force microscopy, the root cause for the contact resistance increase is attributed to the structural changes in thickness and crystallinity of the interfacial layer.
  • Item
    The electronic structure of ϵ-Ga2O3
    (Melville, NY : AIP Publ., 2019) Mulazzi, M.; Reichmann, F.; Becker, A.; Klesse, W.M.; Alippi, P.; Fiorentini, V.; Parisini, A.; Bosi, M.; Fornari, R.
    The electronic structure of ε-Ga2O3 thin films has been investigated by ab initio calculations and photoemission spectroscopy with UV, soft, and hard X-rays to probe the surface and bulk properties. The latter measurements reveal a peculiar satellite structure in the Ga 2p core level spectrum, absent at the surface, and a core-level broadening that can be attributed to photoelectron recoil. The photoemission experiments indicate that the energy separation between the valence band and the Fermi level is about 4.4 eV, a valence band maximum at the Γ point and an effective mass of the highest lying bands of – 4.2 free electron masses. The value of the bandgap compares well with that obtained by optical experiments and with that obtained by calculations performed using a hybrid density-functional, which also reproduce well the dispersion and density of states.
  • Item
    Effect of post-metallization anneal on (100) Ga2O3/Ti–Au ohmic contact performance and interfacial degradation
    (Melville, NY : AIP Publ., 2022) Lee, Ming-Hsun; Chou, Ta-Shun; Bin Anooz, Saud; Galazka, Zbigniew; Popp, Andreas; Peterson, Rebecca L.
    Here, we investigate the effect of post-metallization anneal temperature on Ti/Au ohmic contact performance for (100)-oriented Ga2O3. A low contact resistance of ∼2.49 × 10−5 Ω·cm2 is achieved at an optimal anneal temperature of ∼420 °C for (100) Ga2O3. This is lower than the widely-used temperature of 470 °C for (010)-oriented Ga2O3. However, drastic degradation of the (100)-oriented contact resistance to ∼1.36 × 10−3 Ω·cm2 is observed when the anneal temperature was increased to 520 °C. Microscopy at the degraded ohmic contact revealed that the reacted Ti–TiOx interfacial layer has greatly expanded to 25–30 nm thickness and GaAu2 inclusions have formed between (310)-Ga2O3 planes and the Ti–TiOx layer. This degraded interface, which corresponds to the deterioration of ohmic contact properties, likely results from excess in-diffusion of Au and out-diffusion of Ga, concurrent with the expansion of the Ti–TiOx layer. These results demonstrate the critical influence of Ga2O3 anisotropy on the optimal post-metallization anneal temperature. Moreover, the observed Ti/Au contact degradation occurs for relatively moderate anneal conditions (520 °C for 1 min in N2), pointing to the urgent necessity of developing alternative metallization schemes for gallium oxide, including the use of Au-free electrodes