Search Results

Now showing 1 - 2 of 2
  • Item
    Preparation of Photoactive Transition-Metal Layered Double Hydroxides (LDH) to Replace Dye-Sensitized Materials in Solar Cells
    (Basel : MDPI, 2020) Naseem, Sajid; Gevers, Bianca R.; Labuschagné, Frederick J. W. J.; Leuteritz, Andreas
    This work highlights the use of Fe-modified MgAl-layered double hydroxides (LDHs) to replace dye and semiconductor complexes in dye-sensitized solar cells (DSSCs), forming a layered double hydroxide solar cell (LDHSC). For this purpose, a MgAl-LDH and a Fe-modified MgAl LDH were prepared. X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) spectroscopy were used to analyze the structural properties, morphology, and success of the Fe-modification of the synthesized LDHs. Ultraviolet-visible (UV-Vis) absorption spectroscopy was used to analyze the photoactive behavior of these LDHs and compare it to that of TiO2 and dye-sensitized TiO2. Current-voltage (I–V) solar simulation was used to determine the fill factor (FF), open circuit voltage (VOC), short circuit current (ISC), and efficiency of the LDHSCs. It was shown that the MgFeAl-LDH can act as a simultaneous photoabsorber and charge separator, effectively replacing the dye and semiconductor complex in DSSCs and yielding an efficiency of 1.56%.
  • Item
    Case Study Report "The Renewable Energy Sector: Solar PV Market"
    (Hamilton, NZ : University of Waikato, 2017-03-26) Gogoi Saikia, Madhumita; Fang, Molly; Deraman, Mohd. Yusoff Bin; Carson, Tayla; Taylor, Wanida; Fang, Yixuan
    The renewable energy industry is the future of power consumption. Green electricity or renewable energy is generated from natural resources which has less environment impact to our Earth compared to fossil fuel energy. Using renewable energy reduces the amount of carbon dioxide into the atmosphere. These will help to reduce climate change or global warming. Renewable energy sources like solar energy will reduce our dependence on fossil fuels and noble gases which are in a current state of depletion (Uswitch, 2017). The solar photovoltaic (PV) systems harness the solar energy from the sun and convert this to usable electricity. These systems have a huge amount of growth potential with exponential growth in population and a constant need for power supplies. There has been a steady increase in the current growth of solar PV systems with no indication of a future decline. It was found that this technology is more viable in Asian countries due to low production and wage costs for labour. The main variables causing growth in this sector is population growth and increased per capita income. There are also continuous environmental public policies being set which favour the use of renewable energy resources including solar PV systems. Crystalline silica is the most common main component used needed to produce these systems and the changing cost of this will affect the future market. Using Porter’s competitive model, it was found that the rivalry among competitors is medium to high. There is little threat of substitute products entering the market. Suppliers possess medium to high level of power to bargain. There has been an increasing number of installation of solar PV panels which indicates that in the future the bargaining power of customers could be considerably high. The price elasticity for the solar market was found to be relatively high. Overall there is high potential for growth within this industry and no indication that there would be a decline in the years to come.