Search Results

Now showing 1 - 2 of 2
  • Item
    Surface Treatment of Carbon Fibers by Oxy-Fluorination
    (Basel : MDPI, 2019) Kruppke, Iris; Scheffler, Christina; Simon, Frank; Hund, Rolf-Dieter; Cherif, Chokri
    In this paper, the oxy-fluorination process and the influence of different concentrations of fluorine and oxygen in the gas phase on the physicochemical properties of polyacrylonitrile(PAN)-based carbon fibers are described. The properties of the treated carbon structures are determined by zeta potential and tensiometry measurements. In addition, changes in surface composition and morphology are investigated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Adhesion properties are characterized by the single fiber pull-out (SFPO) test. Furthermore, changes in intrinsic properties are described by means of tensile and density measurements. After a primary desizing effect by oxy-fluorination, an increased number of oxygen-containing surface functional groups could be detected, which led to more debonding work in SFPOs with an epoxy-based matrix. It was also shown that the polar surface energy grows with rising fluorine concentration in the reaction gas mixture. In addition, a minor increase of ~10% in the maximum strength of PAN-based carbon fibers is detected by single fiber tensile measurements after oxy-fluorination with a fluorine content of 5% in the reaction mixture.
  • Item
    Spinning of Endless Bioactive Silicate Glass Fibres for Fibre Reinforcement Applications
    (Basel : MDPI, 2021) Eichhorn, Julia; Elschner, Cindy; Groß, Martin; Reichenbächer, Rudi; Herrera Martín, Aarón X.; Prates Soares, Ana; Fischer, Heilwig; Kulkova, Julia; Moritz, Niko; Hupa, Leena; Stommel, Markus; Scheffler, Christina; Kilo, Martin
    Bioactive glasses have been used for many years in the human body as bone substitute. Since bioactive glasses are not readily available in the form of endless thin fibres with diameters below 20 µm, their use is limited to mainly non-load-bearing applications in the form of particles or granules. In this study, the spinnability of four bioactive silicate glasses was evaluated in terms of crystallisation behaviour, characteristic processing temperatures and viscosity determined by thermal analysis. The glass melts were drawn into fibres and their mechanical strength was measured by single fibre tensile tests before and after the surface treatment with different silanes. The degradation of the bioactive glasses was observed in simulated body fluid and pure water by recording the changes of the pH value and the ion concentration by inductively coupled plasma optical emission spectrometry; further, the glass degradation process was monitored by scanning electron microscopy. Additionally, first in vitro experiments using murine pre-osteoblast cell line MC3T3E1 were carried out in order to evaluate the interaction with the glass fibre surface. The results achieved in this work show up the potential of the manufacturing of endless bioactive glass fibres with appropriate mechanical strength to be applied as reinforcing fibres in new innovative medical implants.